
CSE113: Parallel Programming
March 10, 2023

• Topics:
• Intro to GPUs

Announcements

• HW 2 grades are out, let us know if there are any issues
• Especially let us know if there are issues with throughput

• Work on Homework 4 (Due today, you have un=l March 14)

• Planning on HW 5 to be released today

• Last module of the class!

Previous Quiz

Previous Quiz

Previous Quiz

Previous Quiz

Previous Quiz

Previous Quiz

Review: Progress and schedules

Liveness property

• Something good will eventually happen

• Examples:
• The mutex program will eventually terminate
• The self driving car will eventually reach its des2na2on

• More difficult to reason about that safety proper=es

Scheduler specifica>ons

• What is a scheduler specification?
• A programming guide should give you a scheduler specification
• As a programmer, you need to make sure that your program is safe to run

under the scheduler
• This is similar to the memory model, however, there are no “fences” in the

scheduler.
• For example mutexes can starve under the system scheduler, then you simply

can’t use mutexes on that system.
• C++ let’s you query the threading library to see what scheduler they support.

Schedulers

• A fair scheduler typically requires preemp=on

Thread 0

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources
Opera6ng

System

Schedulers

• A fair scheduler typically requires preemp=on

Thread 0

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources

Thread 0 has
had enough

.me

Opera6ng
System

Schedulers

• A fair scheduler typically requires preemp=on

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources

Who to put
on now?

Thread 0
Operating

System

Schedulers

• A fair scheduler typically requires preemp=on

Core 0

Thread 1Thread 2

Thread 3

Thread list

resources Thread 0
Opera6ng

System

OS does a good job giving all threads a chance

The fair scheduler

• every thread that has not terminated will “eventually” get a chance to
execute.

• “concurrent forward progress”: defined by C++
not guaranteed, but encouraged (and likely what you will observe)

• “weakly fair scheduler”: defined by classic concurrency textbooks

Schedulers

• A fair scheduler typically requires preemp=on

Core 0

Thread 1Thread 2

Thread 3

Thread list

resources

This is
exhaus.ng!

Thread 0
Operating

System

I need to
keep track of
who needs a

turn!

Schedulers

• A fair scheduler typically requires preemption

Core 0

Thread 1:
program data
local variables

Thread 2

Thread 3

Thread list

resources

This is
exhaus.ng!

Thread 0
Opera6ng

System

peak into a thread object:

Es6mated to be ~30K cycles
to context switch between

threads

I need to
keep track of
who needs a

turn!

Parallel Forward Progress

• “Any thread that has executed at least 1 instruc=on, is guaranteed to
con=nue to be fairly executed”

• Also called:
• “Parallel Forward Progress”: by C++
• “Persistent Thread Model”: by GPU programmers
• ”Occupancy Bound ExecuPon Model”: in some of my papers

simplified execu>on model

Core 0 Core 1 Core 2

t0t1t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

The HSA scheduler (power saving scheduler)

• The thread with the lowest ID that hasn’t terminated is guaranteed to
eventually be executed.

• Called:
• “HSA” - Heterogeneous System Architecture, programming language

proposed by AMD for new systems.

• The HSA language appears to be defunct now, but the scheduler is a good fit
for mobile devices (esp. mobile GPUs).

A power-saving scheduler

Core 0 Core 1 Core 2

t0t1t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

preempted

A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

preempted

A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

Thread 0:
0.0: m.lock();
0.1: m.unlock();

Thread 1:
1.0: m.lock();
1.1: m.unlock();

What about a mutex? Which scheduler is it guaranteed to work with?

A different type of non-termination

Hallway problem

🚶

A different type of non-termination

Hallway problem

🚶

A different type of non-termina>on

Hallway problem

🚶

A different type of non-termina>on

Hallway problem

🚶

A different type of non-termina>on

Hallway problem

🚶

A different type of non-termina>on

Hallway problem

🚶

Can they dance around each other forever?

Thread 0:
... do {
0.0 x.store(0);
0.1 } while (x.load() != 0)

Thread 1:
... do {
1.0 x.store(1);
1.1 } while (x.load() != 1)

Each thread stores their thread id,
and then loads the thread id. It loops while
it doesn’t see its id

Each thread gets a chance to execute, but they
get in each others way.

This is called a livelock

Livelock

• All threads are geVng a turn, but they are constantly geVng in each
others way

• Requires a different type of fairness
• Strong fairness
• All threads get a turn, and for a variable amount of Pme
• Tends to work on CPU threads due to natural variance of processors and

preempPon
• Can actually hang on GPUs - much more regular scheduler

GPUs: a brief history

• Hard to track everything down
• First chapter of CUDA by Example
• hUps://www.techspot.com/arPcle/650-history-of-the-gpu/

• Please send me any other references you might find!

The very beginning

• Specialized hardware to accelerate
graphics rendering

• One of the first real-7me computers:
Whirlwind 1 at MIT (1951)
• Flight simulator for bombers
• vector graphics

Image from: h,ps://ohiostate.pressbooks.pub/graphicshistory/chapter/2-1-whirlwind-and-sage/

Specializa>on

• Next 30 years, specialized hardware for specialized so^ware to
display 2D graphics

• Specialized
• Typically ran specific programs
• portability was not a top priority
• Even the idea of portable ISAs were not mainstream

Mul>-program devices

• 1977: Television Interface Adapter
• One of the first (and widely produced) portable (i.e. mulPple program) GPUs

from: h,ps://en.wikipedia.org/wiki/Television_Interface_Adaptor

OS integra>on

• 1990s: Windows: a graphical opera=ng systems, required chips to
support 2D graphics.

• New APIs star=ng appearing, to enable GUI programs

Windows 3 (1990)

1992

1995

h,ps://en.wikipedia.org/wiki/DirectX

h,ps://en.wikipedia.org/wiki/MicrosoM_Windows

h,ps://en.wikipedia.org/wiki/OpenGL

3D graphics in consoles (1993)

• Super Nintendo was not powerful enough to draw 3D graphics
• Shigeru Miyamoto really wanted a 3D flight simulator though
• Worked with a Bri=sh so^ware company to develop...

3D graphics in consoles (1993)

• Super Nintendo was not powerful enough to draw 3D graphics
• Shigeru Miyamoto really wanted a 3D flight simulator though
• Worked with a Bri=sh so^ware company to develop...

h,ps://en.wikipedia.org/wiki/Star_Fox_(1993_video_game)

3D graphics in consoles (1993)

• Game cartridges shipped with a “mini GPU” on them:
• the Super FX

h,ps://twi,er.com/gameminesocials/status/1322946537077526528?s=20

3D graphics accelera>on

• 1996 : First 3D graphics accelerator: 3Dfx Vodoo
• Discrete GPU
• Early 3D games: e.g. tomb raider
• Acquired by Nvidia in 2002

h,ps://en.wikipedia.org/wiki/3dfx_InteracZve

3D graphics accelera>on

• 3D accelerators con=nued, many companies compe=ng:
• Nvidia
• ATI
• 3Dfx
• and more...

• Next milestone in 1999:
• Nvidia coins the term “GPU”
• Compare with modern website

h,ps://web.archive.org/web/20030814003456/www.nvidia.com/object/gpu.html

Programmable 3D accelerators

• 2001: Microso^ DirectX 8 required programmable vertex and pixel
shaders.

• 2001: First GPU to sa=sfy the requirement was Nvidia GeForce 3
• we are now on 17
• Used on the original Xbox

• Programmers started wri=ng general programs for these GPUs:
• Present your data as a graphical input (e.g. Textures and Triangles)
• Read the output aaer a series of “graphics” API calls

GPGPU Programming

• 2006: Nvidia releases CUDA: programming language for their GPUs
• Supported by 8th generaPon CUDA devices.
• Integrated vertex and pixel cores into “shader cores”
• Support for IEEE floaPng point

• Soon a^er...

GPGPU Programming

• 2006: Nvidia releases CUDA: programming language for their GPUs
• Supported by 8th generaPon CUDA devices.
• Integrated vertex and pixel cores into “shader cores”
• Support for IEEE floaPng point

• Soon a^er...

• 2008: The Khronos Group launches OpenCL for cross vendor GPGPU:
• including AMD, Intel, Qualcomm

Khronos Group

• Started in 2000 by Apple as a standards body for graphics API:
• A way to unify APIs across many different vendors
• at the Zme: ATI, Nvidia, Intel, Sun Microsystems (and a few others)
• now: Many companies, including AMD, Nvidia, Intel, Qualcomm, ARM, Google

• OpenGL is maybe the biggest standard they maintain (for graphics)
• OpenCL is biggest for compute
• Vulkan is their new standard (will it catch on??)
• (disclosure: I am an individual contributor J)

• Apple deprecated Khronos group standards to support Metal in 2018

h,ps://en.wikipedia.org/wiki/Khronos_Group

Where are we now?

• Nvidia CUDA is widely used, driving many HPC and ML applica=ons
• OpenCL is used to program other GPUs (although it is not as widely

used)
• Metal is used for Apple devices
• Vulkan has momentum

• New GPGPU programming languages are on the horizon:
• WebGPU - a javascript interface to unite Metal, Vulkan and DirectX
• Its ambiPous! Will it work?!
• Available in canary builds of Chrome

GPU Shortages?

• Cryptocurrency:
• 2018 reported tripling of GPU prices and shortages due to increase demand

from miners.

• SPll happening will lots of market fluctuaPons.

• SPll plenty of GPUs in your phone, laptop, etc. J

Teaching GPU programming

• This is difficult!

• Nvidia GPUs have the most straighlorward programming model
(CUDA). They also have great PR.

• It is extremely difficult to get a class of 120 students access to Nvidia
GPUs these days.
• AWS? Expensive and oaen oversubscribed w.r.t. GPUs
• Department? ML folks get priority and super compuPng clusters are painful

Going forward

• The GPU programming lectures will use CUDA
• It is widely used
• The programming model is straighlorward

• Homework will use WebGPU, because it is widely supported
• There are more non-Nvidia GPUs in this room than Nvidia GPUs

Going forward

• The homework uses Javascript as its ”CPU” language, and webGPU as
its ”GPU” language.

• We have provided generous skeletons for the homework. We can go
over some javascript, but it is a high-level language and should not be
hard to figure out what you need to do.

• The WebGPU por=on is straight forward and I will provide a mapping
directly from what we talked about to what you need.

Homework 5 - first look

• It is the first =me offering this homework, so feedback is very
welcome and we will be generous with support.

• Thanks to Mingun Cho who basically did all the work seVng up the
assignment!

Homework 5 - first look

• Prerequisits
• Google Chrome (possibly we need canary version)
• should be stable on Windows and Mac
• if you are running linux, please try things out ASAP

• Why do we need the Canary?
• WebGPU is new and support is inconsistent on main (Although it is officially

supported)

• Perhaps more interesPng is the shared array buffer.

Homework 5 - first look

• Javascript shared array buffer:
• How javascript threads can actually share memory
• Similar to memory in C++

Your applica2on will be in a secure context (you are wri2ng and running locally!)

Homework 5 - first look

• You will also to be able to run a local web server.

Homework 5 - first look

• Let’s have a look!

Homework 5 - first look

• Your assignment:
• N-body simulaPon

• Each par=cle interacts with every
other par=cle

Zme = 0 Zme = 1 Zme = 2

Examples

• Gravity:

• Boids:
• hUps://en.wikipedia.org/wiki/Boids

Your homework

• Boids and N-body require a liqle bit of physics background so we will
do something simpler.
• If you want to explore with physics please feel free

• Local aqrac=on clustering:
• For each parPcle: find your closest neighbor
• You can take one step in the x direcPon and one step in the y direcPon

towards your closest neighbor.

Your homework

• Part 1 of your homework will do this on a single javascript thread

• Demo

Your homework

• Looks good, but with more par=cles, things start to go slower...

Your homework

• Looks good, but with more par=cles, things start to go slower...

• Part 2 of the homework is to implement with mul=ple CPU threads
using javascript webworkers
• Should get a linear speedup

• Part 3 is to implement with webGPU
• Should get a BIG speedup!

• You need to explore how many par=cles you can simulate while
keeping a 60 FPS framerate.

Let’s look at the code

Shared Array Buffer

• Like Malloc, allocates a ”pointer” to a contagious array of bytes

• Can pass the “pointer” to different threads

• Need to instan=ate a typed array to access the values

• Example

See you on Monday

• Turn in HW 4 if you haven’t already

• Working on GPU programming!

