
CSE113: Parallel Programming
Jan. 30, 2023

• Topics: 
• Mutual exclusion examples
• Multiple mutexes
• Mutex properties
• Atomic operation properties

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release



Announcements 

• Hope everyone enjoyed the guest lectures by Devon and Jessica!



Announcements 

• Final late day of HW 1 is today
• No late submissions accepted after today at midnight
• Some office hours if you need some last minute help
• We will try to answer questions asked before 5 PM, but no guarantees afterwards.

• HW 2 is planned to be released by midnight tonight
• Same due date structure:
• due in 10 days
• 4 late days if needed

• You can start doing part 1 of HW 2 after today’s lecture
• At least do the reading in the book



Quiz review



Picking up on mutexes:



Programming with mutexes can be HARD!

make sure all data conflicts are protected with a mutex

keep critical sections small

balance between having many mutexes (provides performance) but 
gives the potential for deadlocks



Towards Implementations



Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time. 
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until 
the thread that has acquired the mutex releases it.

mutex acquire

disallowed!

mutex request mutex acquire mutex request



Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time. 
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until 
the thread that has acquired the mutex releases it.

mutex acquiremutex request mutex acquire mutex request mutex release

allowed!



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

allowed



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

also allowed



Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex 
must eventually obtain the mutex. 

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it



Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex 
must eventually obtain the mutex. 

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

Difficult to provide in practice and timing variations usually provide this property naturally 



Properties of mutexes

Recap: three properties

• Mutual Exclusion: Two threads cannot be in the critical section at the same 
time

• Deadlock Freedom: If a thread has requested the mutex, and no thread 
currently holds the mutex, the mutex must be acquired by one of the 
requesting threads 

• Starvation Freedom (optional): A thread that requests the mutex must 
eventually obtain the mutex. 



Building blocks

• Memory reads and memory writes
• later: read-modify-writes

• We need to guarantee that our reads and writes actually go to 
memory.
• And other properties we will see soon

• To do this, we will use C++ atomic operations



A historical perspective

• Adding concurrency support to a programming language is hard!
• The memory model defines how threads can safely share memory

• Java tried to do this,

wikipedia

Brian Goetz (2019)



A historical perspective

• How is C++?

• Has issues (imprecise, not modular)
• but at least considered safe
• Specification makes it difficult to reason about all programs
• Open problem!

• Luckily mutexes (and their implementations) avoid the problematic 
areas of the language!



Our primitive instructions

• Types: atomic_int

• Interface (C++ provides overloaded operators):
• load
• store

• Properties:
• loads and stores will always go to memory.
• compiler memory fence
• hardware memory fence



Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference



Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

int foo(int x) {
x = 0;
for (int i = 0; i < 2048; i++) {
x++;

}
return x;

} 

int foo(atomic x) {
x.store(0);
for (int i = 0; i < 2048; i++) {
int tmp = x.load();
tmp++;
x.store(tmp);

}
return x.load();

} 



Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

• Compiler makes reasoning about parallel code hard, but big 
performance improvements:
• O(2048) vs. O(1)



Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid



Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

can be optimized to:



Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

can be optimized to: can be optimized to:



Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

a[i] = 6;
x = a[i];

x = 6;

can be optimized to: can be optimized to: can be optimized to:



Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

• And many others... especially when you consider mixing with other 
optimizations
• Very difficult to understand when/where memory accesses will actually occur 

in your code



Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

Compiler cannot keep personal_account
in a register past the mutex 

because this thread needs to see the
updated view



Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?



Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?

initially personal_account is 0



Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0



Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1



Atomic properties

• Compiler Fence

Personal_account += 1

Personal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1; *personal_account = reg;

personal_account is -1

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1



Atomic properties

• Also provides a memory barrier



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account 0

mutex: Free
personal_account NA

mutex: Free
personal_account 0



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account 0

mutex: C0
personal_account NA

mutex: C0
personal_account 0



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

Possible for the 
mutex message
to travel through
the cache before the
personal_account information!



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the 
mutex message
to travel through
the cache before the
personal_account information!



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the 
mutex message
to travel through
the cache before the
personal_account information!



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account 0

mutex: C1
personal_account 0

Possible for the 
mutex message
to travel through
the cache before the
personal_account information!

stale value!



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0

rewind

memory fence



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account -1

memory fence



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: free
personal_account -1

mutex: free
personal_account NA

mutex: free
personal_account -1

memory fence



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account -1

memory fence



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence



• Memory Fence (or Memory Barrier)

C0 C1

L1 
cache

L1 
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence

got the right value



• Memory Fence (or Memory Barrier)

different architectures have different memory barriers

Intel X86 naturally manages caches in order

ARM and PowerPC let cache values flow out-of-order
GPUs let caches flow out-of-order

RISC-V has two models: 
more like x86: easier to program
more like ARM: faster and more energy efficient

For mutexes, atomics will naturally handle the memory fences for us!



Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like 
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release



Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like 
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

C0 memory operations are performed and flushed

C1 memory operations have not yet been performed and cache is invalidated



Mutex Implementations



Mutex Implementations

• We will just consider two threads for now, with thread ids 0, 1

• A first attempt:
• A mutex contains a boolean.

• The mutex value set to 0 means that it is free. 1 means that some thread is 
holding it.

• To lock the mutex, you wait until it is set to 0, then you store 1 in the flag.

• To unlock the mutex, you set the mutex back to 0.



Mutex Implementations

atomic_bool for our memory location

mutex is initialized to “free”



Mutex Implementations

Once the mutex is available, we will claim it

While the mutex is not available (i.e. another thread has it)



Mutex Implementations

Once the mutex is available, we will claim it

While the mutex is not available (i.e. another thread has it)

Whats up with this while loop?



Mutex Implementations

To release the mutex, we just set it back to 0 (available)



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

m.request



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)



Thread 0:
m.lock();
m.unlock();
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)

Mutex request

flag.load flag.load flag.load

Mutual Exclusion property!
critical sections do not overlap!

returns 1



core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release



core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex releaseload load load load loadload load load load load



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

Lets try another interleaving



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

returns 0

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0

flag.store(1)

Mutex acquire Critical section

Critical sections overlap! This mutex
implementation is not correct!

flag.load flag.store(1)



Mutex Implementations

• Second attempt:
• A flag for each thread (2 flags)

• If you want the mutex, set your flag to 1.

• Spin while the other flag is 1 (the other thread has the mutex)

• To release the mutex, set your flag to 0



Mutex Implementations

two flags this time

both initialized to 0



Mutex Implementations

Thread id (0, or 1)

Mark your intention to take the lock

Wait for other thread to leave the 
critical section 



Mutex Implementations

Thread id (0, or 1)

Mark your flag to say you have left the 
critical section.



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Mutex acquire Critical section



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Mutex acquire Critical section Mutex release

flag[0].store(0)



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].load

Mutex acquire Critical section Mutex release

Mutex request

flag[0].load

Mutex acquire

returns 0

flag[0].store(1) flag[0].store(0)

flag[1].store(1) flag[0].load flag[0].load flag[0].load

Critical section

flag[1].store(0)

Mutex release

critical sections do not 
overlap! 

returns 1



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

returns 1

returns 1



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

returns 1

returns 1

flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

Both will spin forever!



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex



Mutex Implementations

Third attempt



Mutex Implementations

back to a single variable

initialized to -1 



Mutex Implementations

Victims only job is to spin

Volunteer to be the victim



Mutex Implementations

No unlock!



core 0

Mutex request

Thread 0:
m.lock();
m.unlock();



core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

victim.loadvictim.store(0)



core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

victim.loadvictim.store(0)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load

spins forever if
the second thread
never tries to take the mutex!



core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns ?



core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire



core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire Mutex release Mutex request

victim.store(1)



core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire Mutex release Mutex request

victim.store(1)

victim.load

returns 1

Mutex acquire

victim.load victim.load victim.load



Mutex Implementations

Finally, we can can make a mutex that works: 

Use flags to mark interest
Use victim to break ties

Called the Peterson Lock



Mutex Implementations

flags and victim

Initially:
No victim and no threads are interested in the critical section



Mutex Implementations

j is the other thread

Mark ourself as interested

volunteer to be the victim in case of a tie 

Spin only if:
there was a tie in wanting the lock,
and I won the volunteer raffle to spin



Mutex Implementations

mark ourselves as uninterested



Thread 0:
m.lock();
m.unlock();

previous flag
issue

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].load

Mutex request

flag[0].load

returns 1

flag[0].store(1)

flag[1].store(1) flag[0].load flag[0].load flag[0].load

Both will spin forever!

flag[0].load flag[0].load flag[0].load flag[0].load

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

how does petersons solve this?



Thread 0:
m.lock();
m.unlock();

Tie breaking with
victim

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

only one of the stores will be in victim (one will overwrite the other) 



Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

only one of the stores will be in victim (one will overwrite the other) 
1 0

victim.loadflag[0].load

1 0

Tie breaking with
victim



Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Tie breaking with
victim



Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(1)

Tie breaking with
victim



Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(1)

victim.loadflag[1].load

0 0

Mutex acquire

Tie breaking with
victim



core 0

Mutex request

flag[1].loadflag[0].store(1)

will spin forever!

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

Thread 0:
m.lock();
m.unlock();

previous victim
issue



Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0



Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0
Mutex acquire

we can enter critical section because the other thread isn’t interested

Critical section



This lock satisfies the two critical properties

• Mutual exclusion

• Deadlock freedom

• More formal proof given in the textbook



What about starvation

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

recall the starvation property:



What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution



What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim



What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim



What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim

Threads take turns in petersons
algorithm. It is starvation free



Mutex Implementations

Peterson only works with 2 threads.

Generalizes to the Filter Lock (Read chapter 2 in the book, part 1 of 
your homework!)



Thanks!

• Next time: 
• practical mutual exclusion

• Finish homework 1 and look out for homework 2! 
• use office hours, piazza and tutors

• Do the quiz!


