
CSE 113 Special Topic Class

Parallel Programming
with OpenMP

Jessica Imlau Dagostini
jessica.dagostini@ucsc.edu

Announcements
● Homework was due yesterday (01/26)

4 free late days on each assignment, so you have until
Monday
No days after that, no exceptions

● Remember: We did not give you all the tests in the
autograder!

● We will be grading speedups, which the autograder
does not check for right now.

● Part 2: The chunking method we discussed in class will
not give a speedup on the servers. You will have to think
of other chunking methods. You will need to get a
speedup on the grading server to get full points.

● Homework 2 will be released on Monday by midnight

What is OpenMP?

OpenMP is one of the most used parallel programming
models nowadays;

It is an model/API for parallelism in machines with
multiprocessors (i.e. any computer machine) and shared
memory - multithreaded;

OpenMP != OpenMPI

It is a set of compiler directives and libraries to programmers
create parallel applications.

What is OpenMP?
Fork Join Model

OpenMP uses the fork-join model of parallel programming

What is OpenMP?
Fork Join Model

OpenMP uses the fork-join model of parallel programming

All programs start on the master thread, which is
sequentially executed until reach a parallel region

Fork - master thread start a group of parallel threads

Join - when the parallel thread finish their jobs, they are
synchronized and closed, coming back to the thread master

What is OpenMP?
Goals

● Standardize

● Simplify

● Make parallelization easier

● Allow portability

Components

● Compiler Directives

● Runtime Library

● Environment Variables

What is OpenMP?

How to use

OpenMP is available for languages C, C++ e Fortran

Next examples will be in C++

Need to include the omp.h library to be able to use specific
types and functions from OpemMP
#include<omp.h>

To compile, we add the flag -fopenmp
g++ -o foo -fopenmp foo.cpp

Installation

Ubuntu

1. Check if you already have gcc/g++ on your PC

gcc -v

2. If not, install with

apt install g++

3. To check if the OpenMP is enable, execute

echo |cpp -fopenmp -dM |grep -i open

4. You can also intall the library separated

apt install libomp-dev

Installation

Windows
1. Install the minGW compiler if you don’t have a gcc/g++

compiler installed already
https://osdn.net/frs/redir.php?m=xtom_us&f=mingw%2F682
60%2Fmingw-get-setup.exe

2. After downloading, open the executable and click on the
following buttons, in order

a. Install

b. Continue

c. Continue

d. At the MinGW Installation Manager, on “Basic Setup”, DO NOT
select an option that has ada, fortran and objc in their names

e. In this same screen, change to “All Packages”, “MinGW”, and
select all options that have pthreads (they are 3)

https://osdn.net/frs/redir.php?m=xtom_us&f=mingw%2F68260%2Fmingw-get-setup.exe
https://osdn.net/frs/redir.php?m=xtom_us&f=mingw%2F68260%2Fmingw-get-setup.exe

1. Checked all options, go to “Installation -> Apply”

2. Now we need to add the environment variables

a. At the Start menu, look for “environment variables”

b. Click on the “Set environment variables” option

c. In the next box, click on “Environment Variables”

d. At “System Variables”, search for Path and edit

e. In this new window, click on edit and add

C:\MinGW\bin

f. Click Ok in all next boxes, until all them are closed

Installation

Windows

1. Open a windows terminal

a. Search for CMD

2. On terminal, try

gcc -v

3. Showing the version, it is all set

Installation

Windows

OpenMP

Directives and Pragmas

OpenMP is based in directives and pragmas

This makes the parallel programming easy

A directive is a special line that indicates to the compiler
that we are starting a parallel region

#pragma omp …

To parallelize a loop, for example, we can use the directive

#pragma omp parallel for

Directives and Pragmas

Scope of Variables
Seamless to the sequential programming, variables has scopes, that are the parts

of the code where they are visible

In OpenMP, a variable scope refers to the set of threads that can access a variable

in parallel

● Variables that can be accessed by all threads from a group has a shared

scope

● Variables that can only be accessed by one thread only has a private scope

The default scope to variables declared before a parallel block is shared

Directives and Pragmas

Clauses
● shared(var1,var2,...)

Variables that will be shared through all threads (same memory local)

● private(var1,var2,..)

Each thread has its own copy of each variable (not shared)

● firstprivate(var1,var2,...)

Private variables that are only initiated when the parallel region starts

● lastprivate(var1,var2,...)

Private variables that has their values saved only on the last iteration

● schedule(type [,chunk])

Controls how the loop iterations are spread among threads

● reduction(operator|intrinsic:var1,var2...)

Make sure that a reduce operation is executed safely

Directives and Pragmas

Hello World with OpenMP

#include <omp.h>

#include <cstdio>

int main() {

 #pragma omp parallel

 printf("Hello from thread %d, nthreads %d\n",

 omp_get_thread_num(), omp_get_num_threads());

}

To compile

gcc -o helloworld -fopenmp helloworld.cpp

Directives and Pragmas

For Loops with OpenMP
#include <omp.h>

#include <cstdio>

#define MAX 20

int busy(int i) {

 printf("iteration %d on thread %d, nthreads %d\n",

 i, omp_get_thread_num(), omp_get_num_threads());

 return 0;

}

int main() {

 int i;

 #pragma omp parallel for

 for (i=0; i < MAX; i++) {

 busy(i);

 }

}

