
CSE113: Parallel Programming
Jan. 23, 2023

• Topics:
• Review SPMD programming model
• Intro to mutual exclusion

• Different types of parallelism
• Data conflicts
• Protecting shared data

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release

Announcements

• Starting module 2

• Homework 1
• We have covered everything you need in class
• Due on Thursday
• 4 free late days (until next Monday)
• No late assignments accepted after that.

• Office hours/mentoring hours/piazza
• lots of support available

Announcements

• Homework 1 notes:
• No assigned speedup required. You should get a noticeable speedup from ILP
• You can start to share results on your personal machines. Everyone’s results

will be slightly different
• Sometimes you cannot account for small differences

• Run your code for more iterations and take an average

Announcements

• Jessica and Devon will give the lecture on Friday
• I am out for an NSF meeting
• Should be the only disruption this quarter

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

SPMD programming model

• Same program, multiple data

• Main idea: many threads execute the same function, but they operate
on different data.

• How do they get different data?
• each thread can access their own thread id, a contiguous integer starting at 0

up to the number of threads

SPMD programming model

lets do this in parallel!
each thread increments different
elements in the array

void increment_array(int *a, int a_size) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

The function gets a thread id and the
number of threads

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

A few options on how to split up the work
lets do round robin

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

indices computed by thread 0

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iterations computed by thread 1

SPMD programming model
void increment_array(int *a, int a_size, int tid, int num_threads);

#define THREADS 8
#define A_SIZE 1024
int main() {
int *a = new int[A_SIZE];
// initialize a
thread thread_ar[THREADS];
for (int i = 0; i < THREADS; i++) {
thread_ar[i] = thread(increment_array, a, A_SIZE, i, THREADS);

}
for (int i = 0; i < THREADS; i++) {
thread_ar[i].join();

}
delete[] a;
return 0;

}

On to the lecture!

Lecture Schedule

• Introduction to thread-level parallelism

• Data conflicts

• Mutual exclusion

Lecture Schedule

• Introduction to thread-level parallelism

• Data conflicts

• Mutual exclusion

Embarrassingly parallel

Embarrassingly parallel

For this class: A multithreaded program is embarrassingly parallel if there are no data-
conflicts.

A data conflict is where one thread writes to a memory location that another thread
reads or writes to concurrently and without sufficient synchronization.

Embarrassingly parallel

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute c[i] = a[i] + b[i]

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

• The different parallelization strategies will probably have different
performance behaviors.

• But they are both embarrassingly parallel solutions to the problem

• There is lots of research into making these types of programs go fast!
• but this module will focus on programs that require synchronization

Embarrassingly parallel

• Next Program

There are 3 arrays: a, b, c.
We want to compute c[i] = a[0] + b[i]

Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

All threads can read from the same value.
Conflicts only occur if a thread writes to the
value!

Embarrassingly parallel

• Next Program

There are 2 arrays: b, c
We want to compute c[0] = b[0] + b[1] + b[2] ...

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Conflict because multiple threads write to the same location!

Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Conflict because multiple threads write to the same location!

Note: Reductions have some
parallelism in them, as seen in your
homework.

We need a way how to safely share memory

• Many applications are not embarrassingly parallel

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Bank

My account: $$

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

these can be done in parallel

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

these can be done in parallel

We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

potential conflict if different
threads access the red node

We need a way how to safely share memory

• Machine Learning

image from: https://www.mathsisfun.com/

Lots of machine learning is some form of matrix multiplication

We need a way how to safely share memory

• Machine Learning

image from: https://www.mathsisfun.com/

Lots of machine learning is some form of matrix multiplication

conflict!

We need a way how to safely share memory

• User interfaces

background process
that provides progress
updates to the UI.

UI updates must be
synchronized!!

Lecture Schedule

• Introduction to thread-level parallelism

• Data conflicts

• Mutual exclusion

Dangers of conflicts

• We will illustrate using a running bank account example

Sequential bank scenario

• UCSC deposits $1 in my bank account after every hour I work.

• I buy a cup of coffee ($1) after each hour I work.

• I work 1M hours (which is actually true).

• I should break even

• C++ code

Concurrent bank scenario

• UCSC contracts me to work 1M hours.

• My bank is so impressed with my contract that they give me a line of
credit. i.e. I can overdraw as long as I pay it back.

• UCSC deposits $1 in my bank account after every hour I work.

• I budget $1M to spend on coffee during work.

Concurrent bank scenario

Tyler $ coffee

Tyler works

Tyler $ coffee Tyler $ coffee

Tyler works Tyler works Tyler works

Tyler $ coffee

This sets up a scheme where I buy coffee concurrently with working

time

Reasoning about concurrency

• What is going on?

• We need to be able to reason more rigorously about concurrent
programs

Code demo

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program

The execution of a program gives rise to events
Important distinction between program and events

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

time

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time timecolor code events.
coffee thread is blue
payment thread is yellow

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time time

Any interleaving of the
events is a valid

execution of
the concurrent

program!

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

consider just one loop iteration

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

one possible execution

j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS) j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

one possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

This time my account isn’t ever negative

tyler_account: 0 tyler_account: 1 tyler_account: 0

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

tyler_account: 0 tyler_account: 1 tyler_account: 0

in our example there are 252 possible interleavings!

Reasoning about concurrency

• Not feasible to think about all interleavings!
• Lots of interesting research in pruning, testing interleavings (Professor Flanigan)
• Very difficult to debug

• Think about smaller instances of the problem, reason about the problem as
a whole.
• Tyler spends a total of $1M on coffee
• Tyler gets paid a total of $1M
• The balance should be 0!

• Reduce the problem: If there’s a problem we should be able to see it in a
single loop iteration.

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

concurrent execution

Lets get to the bottom of our money troubles:
For any interleaving, both of the increase and decrease must happen in some order.
So there isn’t an interleaving that will explain the issue.

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

concurrent execution

tylers_account -= 1

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

tylers_account -= 1

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

this line of code needs to be expanded

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

time time

time

concurrent execution

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

What if we interleave these instructions?

time time

time

concurrent execution

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

T0_load = *tylers_account T1_load = *tylers_account T0_load -= 1 T1_load+= 1 *tylers_account = T1_load *tylers_account = T0_load

time time

time

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

T0_load = *tylers_account T1_load = *tylers_account T0_load -= 1 T1_load+= 1 *tylers_account = T1_load *tylers_account = T0_load

tylers_account has -1 at the
end of this interleaving!

concurrent execution

What now?

• Data conflicts lead to many different types of issues, not just strange
interleavings.
• Data tearing
• Instruction reorderings
• Compiler optimizations

• Rather than reasoning about data conflicts, we will protect against
them using synchronization.

Lecture Schedule

• Introduction to thread-level parallelism

• Data conflicts

• Mutual exclusion

Synchronization

• A scheme where several actors agree on how to safely share a
resource during concurrent access.

• Must define what “safely” means.

• Example:
• Two neighbors sharing a yard between a dog and cat
• Sharing refrigerator with roommates
• An account balance that is written to and read from
• Chapter 1 in text book

Mutexes

• A synchronization object to protect against data conflicts

Simple API:

lock()
unlock()

• Before a thread accesses the shared memory, it should call lock()
• When a thread is finished accessing the shared data, it should call unlock()

Tyler’s coffee addiction:

tylers_account -= 1;

Tyler’s employer

tylers_account += 1;

A thread is a sequential program

assume a global mutex object m
protect the account access with the mutex

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

assume a global mutex object m
protect the account access with the mutex

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

at this point, thread 0 holds the mutex.
another thread cannot acquire the mutex until thread 0 releases the mutex
also called the critical section.

mutex request mutex acquire

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex request mutex acquire mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex acquire

disallowed!

mutex request mutex acquire mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution
Thread 0 has released the mutex

mutex request mutex acquire mutex request tylers_account -= 1 mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Thread 1 can take the mutex
and enter the critical section

mutex request mutex acquire mutex request tylers_account -= 1 mutex release mutex acquire

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

A mutex restricts the number of allowed interleavings
Critical section are mutually exclusive: i.e. they cannot interleave

tylers_account += 1 mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

It means we don’t have to think about 3 address code

tylers_account += 1 mutex release

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
if (tylers_account < -100) {
printf(“warning!\n”);
return;

}
m.unlock();
return;

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Make sure to unlock your mutex!

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex release

say tylers_account is -1000

printf(“warning!\n”);

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex releaseprintf(“warning!\n”);

concurrent execution

mutex request mutex acquire mutex request tylers_account -= 1 printf(“warning!\n”)

Thread 1 is stuck!

Thanks!

• Next time:
• Formal properties of mutual exclusion
• Using multiple mutexes
• Atomic RMWs

• Keep in mind HW 1 is due on Thursday

• Remember to do the quiz

