
CSE113: Parallel Programming
Feb 3, 2023

• Topics:
• RMW mutex implementations

• Fairness
• Relaxed Peeking
• Backoff

EXCH()

EXCH()

EXCH()

EXCH()

winner!

spin

spin

spin

Announcements

• We are starting to grade HW 1, expect grades by the time HW 2 is due
(potentially sooner)
• Ask about issues early
• If you believe you were wrongly deducted points, please let us know; performance

issues can be tricky to grade at this scale!

• Homework 2 was released on Monday
• Hoping to get through all material to get through all of it by today!
• If you have questions about the throughput output of the autograder, please let us

know

• Ask for help in office hours or piazza if needed

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

Peterson’s 2 threaded mutex

j is the other thread

Mark ourself as interested

volunteer to be the victim in case of a tie

Spin only if:
there was a tie in wanting the lock,
and I won the volunteer raffle to spin

mark ourselves as uninterested

RMWs for mutexes

CAS lock

Check if the mutex is free, if so, take it. compare the mutex to free (false), if so, replace it with
taken (true). Spin while the thread isn’t able to take
the mutex.

CAS lock

Unlock is simple! Just store false back

Schedule

• Fairness of RMW locks

• Optimization of RMW locks

• RW mutexes

Starvation

• Are these RMW locks fair?

Analysis

core 0

core 1

mutex
request

Is this mutex starvation Free?

mutex
request

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

EXCH()

mutex
request

mutex
acquire

spin

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

EXCH()

Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

EXCH()

mutex
acquire critical section

EXCH()

missed it!
spin

How about in practice?

• Code demo

How can we make this more fair?

• Use a different atomic instruction:
• int atomic_fetch_add(atomic_int *a, int v);

We’ve seen this one before!

How can we make this more fair?

• Use a different atomic instruction:
• int atomic_fetch_add(atomic_int *a, int v);

We’ve seen this one before!
intuition: take a ticket

like at Zoccoli’s!

Ticket lock

• Ticket lock: instead of 1 bit, we need
an integer for the counter.

• The mutex also needs to track of
which ticket is currently being served

Ticket lock

• Ticket lock: instead of 1 bit, we need
an integer for the counter.

• The mutex also needs to track of
which ticket is currently being served

Get a unique number

Spin while your number isn’t being served

To release, increment the number that’s currently
being served.

Analysis

core 0

core 1

mutex
request

Is this mutex starvation Free?

mutex
request

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

currently_serving is 0

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

currently_serving is 1

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

load()
mutex
acquire

Fair but at what cost?

• Example

Schedule

• Fairness of RMW locks

• Optimization of RMW locks

• RW mutexes

Optimizations: relaxed peeking

• Relaxed Peeking
• the Writes in RMWs cost extra; rather than always modify, we can do a simple

check first

Optimizations: relaxed peeking

• Relaxed Peeking
• the Writes in RMWs cost extra; rather than always modify, we can do a simple

check first

Optimizations: relaxed peeking

• What about the load in the loop? Remember the memory fence? Do
we need to flush our caches every time we peek?
• We only need to flush when we actually acquire the mutex

Optimizations: relaxed peeking

• What about the load in the loop? Remember the memory fence? Do
we need to flush our caches every time we peek?
• We only need to flush when we actually acquire the mutex

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

C0 memory operations are performed and flushed

C1 memory operations have not yet been performed and cache is invalidated

Relaxed atomics

• Enter expert mode!
• explicit atomics with relaxed semantics

• Beware! they do not provide a memory fence!

• Only use when a memory fence is issued later before leaving your mutex
implementation. Good for “peeking” before you actually execute your RMW.

Optimizations: backoff

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

Optimizations: backoff

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

Optimizations: backoff

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

Optimizations: backoff

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

Optimizations: backoff

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Thread 0 finishes
critical
section

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Thread 0 finishes
critical
section

mutex release

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Thread 0 finishes
critical
section

mutex release

avoid this!

Optimizations: backoff

• C++
• this_thread::yield();

• Hints to the operating system that we should take a break while other
threads (potentially the threads that have the mutex) get scheduled.

Optimizations: backoff

• C++
• this_thread::yield();

• Hints to the operating system that we should take a break while other
threads (potentially the threads that have the mutex) get scheduled.

where do we put it?

Optimizations: backoff

Demo

• Example in terminal

Optimizations: backoff

• Other backoff strategies: sleeping
• this_thread::sleep_for(10ms);
• Finer control over sleep time

• Exponential backoff:
• Every time the thread wakes up, sleep for 2x as long

• Tuned sleep time:
• Keep track of a sleep time.
• Every time you spin, increase the sleep time (remember for next spin)
• If you acquire, reduce the sleep time

Optimizations: when to use them

• Spinning is useful for short waits on non-oversubscribed systems

• Sleeping is useful for regular tasks
• tasks occur at set frequencies
• critical sections take roughly the same time
• In these cases, sleep times can be tuned

• Yielding is useful for oversubscribed systems, with irregular tasks
• On modern systems, yield is usually sufficient!

Optimizations: when to use them

• When to use what optimization?
• Start with C++ mutex, then
• microbenchmark
• profile

• Sometimes we want our own custom backoff strategies.
• We can optimize around existing mutexes!

try_lock

• another common mutex API method: try_lock()
• one-shot mutex attempt (implementation defined)
• You can then implement your own sleep/yield strategy around this

try_lock

• straightforward with CAS
and exchange mutex

• What about ticket lock?

Example: UI refresh

• Screen refreshes operate at ~60 FPS.

• Assume a situation where there is mutex for the screen buffer. It can
be updated by one thread, once per frame.

• We know that the sleep will be ~16ms

Example: UI refresh

try_lock

• C++ provides a try_lock for their mutex operation

• We have now covered the entire C++ mutex object

Schedule

• Fairness of RMW locks

• Optimization of RMW locks

• RW mutexes

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

But what happens more frequently
than either of those things?

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

But what happens more frequently
than either of those things?

int check_balance() {
return tylers_account;

}

Different actors accessing it concurrently
Credit monitors
Accountants
Personal

which of these operations can safely be
executed concurrently?

Remember the definition of a data-conflict:
at least one write

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

But what happens more frequently
than either of those things?

int check_balance() {
return tylers_account;

}

No reason why this function can’t be
called concurrently. It only needs to
be protected if another thread calls
one of the other functions.

Reader-Writer Mutex

• different lock and unlock functions:
• Functions that only read can perform a “read” lock
• Functions that might write can perform a regular lock

• regular locks ensures that the writer has exclusive access (from other reader
and writers)

• but multiple reader threads can hold the lock in reader state

Reader-Writer Mutex

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

int check_balance() {
return tylers_account;

}

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
return tylers_account;

}

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Reader-Writer Mutex Implementation

• Primitives that we built the previous mutexes with:
• atomic load, atomic store, atomic RMW

• We have a new tool!
• Regular mutex!

Reader-Writer Mutex Implementation

• We will use a mutex
internally.

• We will keep track of
how many readers are
currently “holding” the
mutex.

• We will keep track of if a
writer is holding the
mutex.

Reader-Writer Mutex Implementation

• Reader locks

Reader-Writer Mutex Implementation

• Regular locks

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = false
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = false
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = false
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = true
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = true
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = true
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = False
num_readers = 0

reset!

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = False
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 2

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 2

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 2

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

can we lock yet?

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 0

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 0

Reader Writer lock

• This implementation potentially starves writers
• The common case is to have lots of readers!

• Think about ways how an implementation might be more fair to
writers.

How this looks in C++

#include <shared_mutex>
using namespace std;

shared_mutex m;

m.lock_shared() // reader lock
m.unlock_shared() // reader unlock
m.lock() // regular lock
m.unlock() // regular unlock

Next week

• Planning on last mutex lecture
• More specialized examples
• Optimistic vs. pessimistic concurrency

• Work on HW 2! You now have everything you need to complete it!
• Parts of next lectures might help with part 2.

