CSE113: Parallel Programming

Feb. 27, 2023

* Topics:

e General concurrent sets ! %



Announcements

* Midterm grades should be released
* Let us know within 1 week if there are any issues

* Expect HW 2 grades by the end of the week

* HW 3 is due on Wednesday

* Two additional late days provided because of the storm

* HW 4 is released on Wednesday

e Should have enough material to get started



Announcements

* Last day on concurrent data structures module!

* Moving to reasoning about concurrency on Wednesday



Previous quiz



Previous quiz

Concurrent linked lists can be implemented using locks on every node if:

(O locks are always acquired in the same order
(O two locks are acquired at a time
(O Both of the above

(O Neither of the above



Previous quiz

Lock coupling provides higher performance than a single global lock because threads can traverse
the list in parallel

O True

O False



Previous quiz

Optimistic concurrency refers to the pattern where functions optimistically assume that no other
thread will interfere. In the case where another thread interferes, the program is left in an erroneous
state, but since this is so rare, it does not tend to happen in practice.

O True

(O False



Previous quiz

After this lecture, do you think you would be able to optimize your implementation of the concurrent
stack in homework 2? Write a few sentences on what you might try.



Schedule

* Parallelizing DOALL loops
* How atomics are implemented in hardware

* Lock-free concurrent set



Practical Parallel DOALL Loops

e Languages have various features to enable easy and flexible parallel
DOALL Loops



C++

std::vector<std::string> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[ 1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c



C++

std: :vector<std::string> foo; Iterateble-object
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[ 1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c



C++

std::vector<std::string> foo; Higher order function
std::for each(std::execution::par unseq, for iterating over object
foo.begin(), foo.end(),
[ 1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c



C++

std::vector<std::string> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[ 1] (auto& item) {
//do stuff with item
})i

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

Execution policy types

options:

seq - sequential
par - parallel

par_ unseq - also parallel

more in a few slides!



C++

_ Iterator range
std: :vector<std::string> foo;

std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[ 1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c



C++

std::vector<std::string> foo; Functor or Lambda:

std::for each(std::execution::par unseq, Execute the function
foo.begin(), foo.end(), with each item in the iterated

[ 1 (auto& item) { range
cout << item << endl;

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c



C++

_ Back to execution policies
std: :vector<std::string> foo;

std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[ 1] (auto& item) {

options:
//do stuff with item

seq - sequential
})i par - parallel
par unseq - also parallel

Difference between these
two?

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c



C++

std::vector<std::string> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[ 1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.



C++

std: :vector<std::float> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[ 1] (auto& item) {
tmp += 1.0;
tmp += 2.0;
tmp += 3.0

4

})s

what would we like to do here?

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.



C++

std::vector<std::int> foo;

std::for each(std::execution::par unseq,

foo.begin(), foo.end(),
[ ](auto& item) {

tmp += 1.0;
tmp += 2.0;
tmp += 3.0;

})s

what would we like to do here?

tmp0 += 1.0; // for itemO
tmpl += 1.0; // for iteml
tmp2 += 1.0; // for item2

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

Just like in HW 1!

par_unseq requires that instructions in loops can interleaved!



C++

std::vector<std::int> foo;
std::for each(std::execution::par,
foo.begin(), foo.end(),
[ 1] (auto& item) {
tyler account += item

})s

global variable account, now we’d have a data race!

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.



C++

std::vector<std::int> foo;
std: :mutex m;
std::for each(std::execution::par,
foo.begin(), foo.end(),
[ 1] (auto& item) {
m.lock();
tyler account += item
m.unlock();

})s

We can fix it with mutexes

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.



C++

std::vector<std::int> foo;
std: :mutex m;

std::for each(std::execution::par,

foo.begin(),

foo.end(),

[ 1] (auto& item) {

m.lock();

tyler account += item

m.unlock();

})s

But now we can’t interleave

m.lock(); // for
m.lock(); // for
tyler account +=
tyler account +=

deadlock!

item O
item 1
itemO;
iteml;

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

We need to use std::execution: :par
if iterations cannot be interleaved (e.g. if they use
mutexes)



C++ shortcomings

* Have to modify code
* No control over the parallel schedule



OpenMP

* Pragma based extension to C/C++/Fortran

for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}



OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}
// add -fopenmp to compile line



OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
) cf1] = a[1] + b[1]; launches threads to perform

_ _ loop in parallel. Joins threads
// add -fopenmp to compile line afterward



OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}
// add -fopenmp to compile line

if its so easy, why don’t compilers just do this for us automatically?



OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for

for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}

// add -fopenmp to compile line

if its so easy, why don’t compilers just do this for us automatically?

Performance considerations:
when is parallelism going to provide
a speedup vs. slowdown?

Correctness considerations:

very difficult to determine if loop
is safe to do in parallel



OpenMP

* Pragma based extension to C/C++/Fortran

What about irregular loops?
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}



OpenMP

* Pragma based extension to C/C++/Fortran

What about irregular loops?
#pragma omp parallel for schedule(dynamic)
for (x = 0; x < SIZE; x++) { Schedule keyword
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}



OpenMP

* Pragma based extension to C/C++/Fortran

What about irregular loops?
#pragma omp parallel for schedule(dynamic)

for (x = 0; x < SIZE; xt++) { Schedule keyword
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + ¢c[x,V]; different types of schedules
}

}



OpenMP

e Schedules:
* From http://jakascorner.com/blog/2016/06/omp-for-scheduling.html



schedule (static, chunk-size)

schedule(static):

kkhkkkkhkkkkhkkkkkkkk*k
kkhkkkhkkhkkkhkkhkkkkkkkk*k
kkkkkkkkhkkkkkkkk*k

khkkkkkkkhkkkkkkkk*k

schedule(static, 4):

k%% k%% * %k %% *kk*%k
* %k %% k% *k% k% *k% k% *k%
%k %% * k%% * k%% * k%%

k%% * k%% * k%% * k%%

schedule(static, 8):

kkkkkk*k*% kkkkkk*k%k
*kkkkkk*k*% kkkkkkk%k
kkkkkkk*k kkhkkkkkkk

kkkkkkk*%k kkkkkk*kk

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html



schedule(dynamic, chunk-size)

schedule(dynamic, 1):

* * * * * * % * * * * % * %

schedule(dynamic, 4):
k%% * %k %k % *kkk*
*k k% * k%% *k k% *k k% * % %k %
k%% *kk* * %k %k % * %k %k % * k%%

k%% k%% k%%

schedule(dynamic, 8):

kkhkkkkkk*k kkhkkkkkk*k
kkkkkkk*k kkhkkkkkk*k
*kkkkkkk*% kkkkkkk*k kkhkkkkkk*k

kkkkkkk*k

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html



Schedule

* Parallelizing DOALL loops
* How atomics are implemented in hardware

* Lock-free concurrent set



How is CAS (and others) implemented?

e X86 has an actual instruction
e ARM and POWER are load linked store conditional



Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread 0O:
atomic CAS(a,...);




Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread 0O:
atomic CAS(a,...);

AN

da

a no other thread can access



Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

AN

da

a no other thread can access



Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

\Aait

da

a no other thread can access



Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

Aait

da

a no other thread can access



Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

Aait

da




Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

once the lock is released then we can access

da




Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O:

atomic CAS(a,...); thread 1: thread 2:

a.store(..); a.store(..);

Pros: if there is contention, the CAS
will complete successfully

B



Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread 0O:
atomic CAS(a,...);

Cons: if no other threads are contending, lock
overhead is high

da

N
L



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1; For this example consider an atomic increment

store_exclusive(a, tmp);




Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1;

store exclusive(a, tmp);

before we store, we have to check if there
was a conflict.

da

TO_exclusive =1



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);




Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);




Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store exclusive(a, tmp);




Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store exclusive(a, tmp);

can’t store because our exclusive bit was
changed, i.e. there was a conflict!




Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store exclusive(a, tmp);

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

solution: loop until success:



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);
tmp += 1;

} while(!store exclusive(a, tmp));




Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);
tmp += 1;

} while(!store exclusive(a, tmp));

da

TO_exclusive =1



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);

tmp += 1; Pros: very efficient when there is no conflicts!

} while(!store exclusive(a, tmp));
Cons: conflicts are very expensive!

Spinning thread might starve (but not indefinitely)

d if other threads are constantly writing.

TO_exclusive =1



Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);

tmp += 1; ARM implements all atomics this way!

} while(!store exclusive(a, tmp));

da

TO_exclusive =1



Godbolt example

* Show compiler examples



Schedule

* Parallelizing DOALL loops
* How atomics are implemented in hardware

* Lock-free concurrent set



Sequential List Based Set

add(b)

([3F—Gal[F—c[3—FT]

remove(b)

(T3—>(a] - b 3=—>(c]



Sequential List Based Set

add(b)
CB—»EBY>EI3—>@D
remove(b)

(T3]~ b 3—>(c]



Coarse-Grained Locking

Simple but inefficient!




Hand-over-Hand locking

([F—Gl3—b[F—{]]

O




Hand-over-Hand locking

6

%—'@3—»@3

O




Hand-over-Hand locking




Hand-over-Hand locking

6 6




Hand-over-Hand locking

@

O




Optimistic traversals



What could go wrong?




Validate — Part 1

; : d[F=>(e])

Yes, b still
reachable
from head



Validate Part 2
(while holding locks)

Yes, b still
points to d




Can we optimize more?

e Scan the list once?



Two step removal List

* remove ()
e Scans list (as before)
* Locks predecessor & current (as before)

* Logical delete
* Marks current node as removed (new!)

* Physical delete
» Redirects predecessor’s next (as before)



Two step removal Removal

ERE AN E AN E BN E L CINE g




Two step removal Removal

Present in list



Two step removal Removal

Logically deleted



Two step removal Removal

Physically deleted



Two step removal Removal

Physically deleted



Two step remove list

e All Methods

* Scan through locked and marked nodes

* Must still lock pred and curr nodes.



Validation

* No need to rescan list!
* Check that pred is not marked
 Check that curr is not marked

* Check that pred points to curr



What could go wrong?




What could go wrong?

> @3H—ED




What could go wrong?




What could go wrong?




What could go wrong?




What could go wrong?

<N
(3—GD |(mm|  @z—eD

Uh-oh
O QQ




Fixed with logical flag

8 EgdOIERdt B
=




Fixed with logical flag




Fixed with logical flag




Fixed with logical flag

(3 EI3~EIB~ G




Fixed with logical flag




Fixed with logical flag




Fixed with logical flag




Fixed with logical flag

e
L




Fixed with logical flag




Fixed with logical flag




Fixed with logical flag

b is logically deleted so we
Q need to retry!



To complete the picture

* Need to do similar reasoning with all combination of object methods.

* More information in the book!



Evaluation

 Good:

* Uncontended calls don’t re-traverse

e Bad

e add() and remove() use locks



Lock-free Lists

* Next logical step
* lock-free add() and remove()

e What sort of atomics do we need?

* Loads/stores?
* RMWSs?



Lock-free Lists

(T3> 3> {1

Adding



Lock-free Lists

L[ ==>{a i 5=>(b__

Adding

Find the location

0



Lock-free Lists

L[ ==>{a i 5=>(b__

Find the location

Adding

create “c”



Lock-free Lists

L[ ==>{a i 5=>(b__

Find the location

Adding

create “c”

insert “c”



Lock-free Lists

Ll [ ==>{a i 5=>(b8__

Find the location

Adding

create “c”

insert “c”



Lock-free Lists

Ll [ ==>{a i 5=>(b8__

Find the location

Adding

create “c”

insert “c”

Can this just
be a reqgular store?



Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

create “c”

insert “c”

Can this just
be a reqular store?



Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

create “c”

insert “c”

Can this just
be a reqular store?



Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

create “c”

DROPPED! insert “c”

Can this just
be a reqular store?




Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

Adding
Solution: use CAS

create “c”

DROPPED! insert “c”

Can this just
be a reqular store?




Find the location
Cache your insertion

Lock-free Lists point!

b.next==e

L[ ==>{a i 5=>(b__

Adding
Using CAS




Find the location
Cache your insertion

Lock-free Lists point!

b.next==e

L[ ==>{a i 5=>(b__

create “c”

Adding
Using CAS



Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

L[ ==>{a i 5=>(b__

create “c”

Adding
Using CAS



Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

[ | |']-’ : E . success!

create “c”

Adding
Using CAS



Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

create “c”

Adding
Using CAS



Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

Some other
thread inserted

el
_—

create “c”

Ll [ ==>{a i 5=>(b__

Adding
Using CAS




Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

Some other
thread inserted
CAS will fail!

o n

create “c

Ll [ ==>{a i 5=>(b__

Adding
Using CAS




Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

Some other
thread inserted
CAS will fail!

o n

create “c

Ll [ ==>{a i 5=>(b__

Adding
Using CAS

in the case of
fail, start over




Lock-free Lists

CAS enough for insert,
remove? v




Lock-free Lists

HEELE B N E. 0 B

CAS enough for insert,
remove?

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...




Lock-free Lists

ensures that nobody has inserted a node
between b and c

HEELE B N E. 0 B

CAS enough for insert,
remove?

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...




Lock-free Lists

Rewind

CAS enough for insert,
remove? v

Q Wants to remove ¢




LOCk—free LlStS Q wants to insert d

LI 9=>la b c e[V ]

CAS enough for insert,
remove? v

Q Wants to remove ¢




LOCk—free LlStS Q wants to insert d

LI 9=>la b c e[N ]

CAS enough for insert,
remove? v

Q Wants to remove ¢




LOCk—free LlStS Q wants to insert d

LI 9=>la b c e[N ]

CAS enough for insert,
remove? v

Q Wants to remove ¢




wants to insert d

Lock-free Lists

CAS successfull

CAS enough for insert,
remove?

CAS successful!

Wants to remove ¢




D is dropped!

wants to insert d

Lock-free Lists

CAS successfull

CAS enough for insert,
remove?

CAS successful!

Wants to remove ¢




Solution

e Use AtomicMarkableReference
* Atomic CAS that checks not only the address, but also a bit

* We can say: update pointer if the insertion point is valid AND if the
node has not been logically removed.



wants to insert d

LOCk—free I_lStS Q Check if insertion

point is valid AND
d if Cis not logically
deleted

LI 9=>la b c e[N ]

J
CAS enough for insert,
remove? v Check if insertion point
is valid. And B is not logically
deleted

Wants to remove ¢



Marking a Node

» AtomicMarkableReference class
« Java.util.concurrent.atomic package
e But we’re using a better™ language (C++)

Reference

mark bit



class AtomicMarkedNodePtr {

4

private:
atomic<node *> ptr;
public:
AtomicMarkedNodePtr (node *p) {
node * marked = p | 1;
)

ptr.store (marked

void logically delete() {

// how to store the marked bit atomically?
}

node * get ptr() {

return ptr.load() & (~1);
}

bool CAS (node *e, node *n) {
node * expected = e | 1;
node * new node = n | 1;
return atomic compare exchange (&ptr, &e, new node);




This stuff is tricky

* Focus on understanding the concepts:
* locks are easiest, but can impede performance
 fine-grained locks are better, but more difficult
* optimistic concurrency can take you far
e CAS is your friend

* When reasoning about correctness:
* You have to consider all combination of adds/removes
* thread sanitizer will help, but not as much as in mutexes
e other tools can help (Professor Flanagan is famous for this!)



See you next time!

e Work on HW 3

* Keep an eye out for midterm grades



