
CSE113: Parallel Programming
Feb. 27, 2023

• Topics:
• General concurrent sets

Announcements

• Midterm grades should be released
• Let us know within 1 week if there are any issues

• Expect HW 2 grades by the end of the week

• HW 3 is due on Wednesday
• Two additional late days provided because of the storm

• HW 4 is released on Wednesday
• Should have enough material to get started

Announcements

• Last day on concurrent data structures module!

• Moving to reasoning about concurrency on Wednesday

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Schedule

• Parallelizing DOALL loops

• How atomics are implemented in hardware

• Lock-free concurrent set

Practical Parallel DOALL Loops

• Languages have various features to enable easy and flexible parallel
DOALL Loops

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

//do stuff with item
});

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

//do stuff with item
});

Iterateble-object

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

//do stuff with item
});

Higher order function
for iterating over object

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

//do stuff with item
});

Execution policy types

options:
seq - sequential
par - parallel
par_unseq - also parallel

more in a few slides!

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

//do stuff with item
});

Iterator range

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

cout << item << endl;
});

Functor or Lambda:
Execute the function
with each item in the iterated
range

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

//do stuff with item
});

Back to execution policies

options:
seq - sequential
par - parallel
par_unseq - also parallel

Difference between these
two?

C++

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

std::vector<std::string> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

//do stuff with item
});

Back to execution policies

options:
seq - sequential
par - parallel
par_unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

C++

std::vector<std::float> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

tmp += 1.0;
tmp += 2.0;
tmp += 3.0;
...

});

Back to execution policies

options:
seq - sequential
par - parallel
par_unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

what would we like to do here?

C++
std::vector<std::int> foo;
std::for_each(std::execution::par_unseq,

foo.begin(), foo.end(),
[](auto& item) {

tmp += 1.0;
tmp += 2.0;
tmp += 3.0;
...

});

Back to execution policies

options:
seq - sequential
par - parallel
par_unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

what would we like to do here?

tmp0 += 1.0; // for item0
tmp1 += 1.0; // for item1
tmp2 += 1.0; // for item2
....

Just like in HW 1!

par_unseq requires that instructions in loops can interleaved!

C++
std::vector<std::int> foo;
std::for_each(std::execution::par,

foo.begin(), foo.end(),
[](auto& item) {

tyler_account += item
});

Back to execution policies

options:
seq - sequential
par - parallel
par_unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

global variable account, now we’d have a data race!

C++
std::vector<std::int> foo;
std::mutex m;
std::for_each(std::execution::par,

foo.begin(), foo.end(),
[](auto& item) {

m.lock();
tyler_account += item
m.unlock();

});

Back to execution policies

options:
seq - sequential
par - parallel
par_unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.We can fix it with mutexes

C++
std::vector<std::int> foo;
std::mutex m;
std::for_each(std::execution::par,

foo.begin(), foo.end(),
[](auto& item) {

m.lock();
tyler_account += item
m.unlock();

});

Back to execution policies

options:
seq - sequential
par - parallel
par_unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

But now we can’t interleave

m.lock(); // for item 0
m.lock(); // for item 1
tyler_account += item0;
tyler_account += item1;

deadlock!
We need to use std::execution::par
if iterations cannot be interleaved (e.g. if they use
mutexes)

C++ shortcomings

• Have to modify code
• No control over the parallel schedule

OpenMP

• Pragma based extension to C/C++/Fortran

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

OpenMP

• Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}
// add -fopenmp to compile line

OpenMP

• Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}
// add -fopenmp to compile line

launches threads to perform
loop in parallel. Joins threads
afterward

OpenMP

• Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}
// add -fopenmp to compile line

if its so easy, why don’t compilers just do this for us automatically?

OpenMP

• Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}
// add -fopenmp to compile line

if its so easy, why don’t compilers just do this for us automatically?

Performance considerations:
when is parallelism going to provide
a speedup vs. slowdown?

Correctness considerations:
very difficult to determine if loop
is safe to do in parallel

OpenMP

• Pragma based extension to C/C++/Fortran

What about irregular loops?
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

OpenMP

• Pragma based extension to C/C++/Fortran

What about irregular loops?

Schedule keyword
#pragma omp parallel for schedule(dynamic)
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

OpenMP

• Pragma based extension to C/C++/Fortran

What about irregular loops?

Schedule keyword

different types of schedules

#pragma omp parallel for schedule(dynamic)
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

OpenMP

• Schedules:
• From http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(static, chunk-size)

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(dynamic, chunk-size)

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

Schedule

• Parallelizing DOALL loops

• How atomics are implemented in hardware

• Lock-free concurrent set

How is CAS (and others) implemented?

• X86 has an actual instruction
• ARM and POWER are load linked store conditional

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

thread 1:
a.store(..);

once the lock is released then we can access

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a Pros: if there is contention, the CAS
will complete successfully

thread 2:
a.store(..);

thread 1:
a.store(..);

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

Cons: if no other threads are contending, lock
overhead is high

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

For this example consider an atomic increment

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

before we store, we have to check if there
was a conflict.

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

solution: loop until success:

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

Pros: very efficient when there is no conflicts!

Cons: conflicts are very expensive!

Spinning thread might starve (but not indefinitely)
if other threads are constantly writing.

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

ARM implements all atomics this way!

Godbolt example

• Show compiler examples

Schedule

• Parallelizing DOALL loops

• How atomics are implemented in hardware

• Lock-free concurrent set

Sequential List Based Set

a c d

a b c

add(b)

remove(b)

Sequential List Based Set

a c d

b

a b c

add(b)

remove(b)

honk!

Coarse-Grained Locking

a b d

c
honk!

Simple but inefficient!

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Optimistic traversals

What could go wrong?

b d ea

add(c) Aha!

Validate – Part 1

b d ea

add(c) Yes, b still
reachable
from head

Validate Part 2
(while holding locks)

b d ea

add(c) Yes, b still
points to d

Can we optimize more?

• Scan the list once?

Two step removal List

• remove()
• Scans list (as before)
• Locks predecessor & current (as before)

• Logical delete
• Marks current node as removed (new!)

• Physical delete
• Redirects predecessor’s next (as before)

Two step removal Removal

aa b c d

c

Two step removal Removal

aa b d

Present in list

c

Two step removal Removal

aa b d

Logically deleted

Two step removal Removal

aa b c d

Physically deleted

Two step removal Removal

aa b d

Physically deleted

Two step remove list

• All Methods
• Scan through locked and marked nodes

• Must still lock pred and curr nodes.

Validation

• No need to rescan list!
• Check that pred is not marked
• Check that curr is not marked
• Check that pred points to curr

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

add(c)

c

What could go wrong?

d ea

add(c) Uh-oh

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

remove(b)

Fixed with logical flag

a b d

a not
marked

Fixed with logical flag

a b d

a still
points

to b

Fixed with logical flag

a b d

Logical
delete

Fixed with logical flag

a b d

physical
delete

Fixed with logical flag

a b d

Fixed with logical flag

a b d

b is logically deleted so we
need to retry!

To complete the picture

• Need to do similar reasoning with all combination of object methods.

• More information in the book!

Evaluation

• Good:
• Uncontended calls don’t re-traverse

• Bad
• add() and remove() use locks

Lock-free Lists

• Next logical step
• lock-free add() and remove()

• What sort of atomics do we need?
• Loads/stores?
• RMWs?

a 0 0a b 0e

Adding

Lock-free Lists

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Solution: use CAS

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

success!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

rewind

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

CAS will fail!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

in the case of
fail, start over

Some other
thread inserted

CAS will fail!

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

ensures that nobody has inserted a node
between b and c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists
Rewind

Wants to remove c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

D is dropped!

Solution

• Use AtomicMarkableReference
• Atomic CAS that checks not only the address, but also a bit
• We can say: update pointer if the insertion point is valid AND if the

node has not been logically removed.

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

Check if insertion
point is valid AND
if C is not logically
deleted

Check if insertion point
is valid. And B is not logically
deleted

Marking a Node

• !"#$%&'()*(+,-.-/-)-0&- class
• !"#"$%&'($)*+)%,,-+&$"&*.') package
• But we’re using a better™ language (C++)

address F

mark bit

Reference

class AtomicMarkedNodePtr {
private:

atomic<node *> ptr;
public:

AtomicMarkedNodePtr(node *p) {
node * marked = p | 1;
ptr.store(marked);

}

void logically_delete() {
// how to store the marked bit atomically?

}

node * get_ptr() {
return ptr.load() & (~1);

}

bool CAS (node *e, node *n) {
node * expected = e | 1;
node * new_node = n | 1;
return atomic_compare_exchange(&ptr, &e, new_node);

}
}

This stuff is tricky

• Focus on understanding the concepts:
• locks are easiest, but can impede performance
• fine-grained locks are better, but more difficult
• optimistic concurrency can take you far
• CAS is your friend

• When reasoning about correctness:
• You have to consider all combination of adds/removes
• thread sanitizer will help, but not as much as in mutexes
• other tools can help (Professor Flanagan is famous for this!)

See you next time!

• Work on HW 3

• Keep an eye out for midterm grades

