
CSE113: Parallel Programming
Feb. 24, 2023

• Topics: 
• General concurrent sets



Announcements 

• Midterm was due last Friday
• Everyone got it in on time; thanks!
• We are planning to release grades either today or Monday
• Let us know ASAP if there are issues; you have 1 week

• make a private piazza post

• HW 2 has 2 extra free late days
• get it in by Wednesday

• Because we canceled class, HW 3 will be released Wednesday as well



Previous Quiz



Previous Quiz



Previous Quiz



Previous Quiz



Previous Quiz



New material



C++ Atomic template 

• C++ lets you wrap custom objects/types as an atomic type

• included in <atomic> 

• use like this:
• atomic<int> i;
• atomic<float> f;



C++ Atomic template 

• Lets you:
• load
• store
• exchange
• compare_and_swap

• It may use a lock behind the scenes!

• Examples



C++ Atomic template 

• If you do this to a class, you will lose access to your methods!

• Pattern:
• load the class atomically into a non atomic variable
• operate on it
• store it back. Be careful (others may have updated it!)



Schedule

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking

Thanks to Roberto Palmieri (Lehigh University) and material 
from the text book for some of the slide content/ideas.



Set Interface

• Unordered collection of items
• No duplicates

• We will implement this as a sorted linked list



Set Interface

• Unordered collection of items
• No duplicates
• Methods
• add(x) put x in set
• remove(x) take x out of set
• contains(x) tests if x in set



List Node

class Node {
public:
Value v;
int key;
Node *next;

}



The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞



Sequential List Based Set 

a c d

a b c

add(b)

remove(b) 



Sequential List Based Set 

a c d

b

a b c

add(b)

remove(b) 



Schedule

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking



Coarse-Grained Locking

a b d



Coarse-Grained Locking

a b d

c



honk!

Coarse-Grained Locking

a b d

c
honk!

Simple but inefficient!



Schedule

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking



Fine-grained Locking

• Requires careful thought
• Split object into pieces
• Each piece has own lock
• Methods that work on disjoint pieces need not exclude each other



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a c d

remove(b)



Removing a Node

a c d

remove(b)
Why hold 2 locks?



Concurrent Removes

a b c d

remove(c)
remove(b)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Uh, Oh

a c d

remove(b)
remove(c)



Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)



Problem

• To delete node c
• Swing node b’s next field to d

• Problem is,
• Data conflict:
• Someone deleting b concurrently could 

direct a pointer to c

ba c

ba c



Insight

• If a node is locked
• No one can delete node’s successor

• If a thread locks
• Node to be deleted
• And its predecessor
• Then it works



Hand-Over-Hand Again

a b c d

remove(b)



Hand-Over-Hand Again

a b c d

remove(b)



Hand-Over-Hand Again

a b c d

remove(b)



Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!



Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!



Hand-Over-Hand Again

a c d

remove(b)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor 
Programming 63

Removing a Node

a b c d

Must 
acquire 
Lock for 

b

remove(c)



Removing a Node

a b c d

Cannot 
acquire 

lock for b

remove(c)



Removing a Node

a b c d

Wait!
remove(c)



Removing a Node

a b d

Proceed 
to 

remove(b)



Removing a Node

a b d

remove(b)



Removing a Node

a b d

remove(b)



Removing a Node

a d

remove(b)



Removing a Node

a d



Adding Nodes

• To add node e
• Must lock predecessor
• Must lock successor

• Neither can be deleted



Drawbacks

• Better than coarse-grained lock
• Threads can traverse in parallel

• Still not ideal
• Long chain of acquire/release
• Inefficient



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a c



Schedule

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking



How can we improve

• Acquires and releases lock for every node traversed
• If we have a long list to search, it can be bad!
• reduces concurrency (traffic jams)



Optimistic Synchronization

Assume there will be no conflicts. Check before committing. If there 
was a conflict, try again.



Optimistic Synchronization

• Find nodes without locking



Optimistic Synchronization

• Find nodes without locking
• Lock nodes



Optimistic Synchronization

• Find nodes without locking
• Lock nodes
• Check that everything is OK



Optimistic: Traverse without Locking

b d ea

add(c) Aha!



Optimistic: Lock and Load

b d ea

add(c)



Optimistic: Lock and Load

b d ea

add(c)

c



What could go wrong?

b d ea

add(c) Aha!



What could go wrong?

b d ea

add(c)



What could go wrong?

b d ea

remove(b)



Data conflict!

• Red thread has the lock on a node (so it can modify the node)
• Blue thread is traversing without locks

• What do we do?



Data conflict!

• Red thread has the lock on a node (so it can modify the node)
• Blue thread is traversing without locks

• What do we do? We decided that locking when traversing is too 
expensive.



Lock-free reasoning

• We can use atomic variables



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

class Node {
public:
Value v;
int key;
Node *next;

}



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

class Node {
public:
Value v;
int key;
atomic<Node*> next;

}

Create an atomic pointer type using C++ templates



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

void traverse(node *n) {
while (n->next != NULL) {
n = n->next;

}
}



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

void traverse(node *n) {
while (n->next.load() != NULL) {
n = n->next.load();

}
}



What could go wrong?

b d ea

add(c) Aha!



What could go wrong?

b d ea

add(c)



What could go wrong?

b d ea

remove(b)No more data
conflict, but we do need
to reason about
interleavings and threads
concurrent threads contending
for values.



What could go wrong?

b d ea

add(c)



What could go wrong?

b d ea

add(c)

c



What could go wrong?

d ea

add(c) Uh-oh



Validate – Part 1

b d ea

add(c) Yes, b still 
reachable 
from head



What happens if failure?

• Ideas?



What happens if failure?

• Could try to recover? Back up a node?
• Very tricky!
• Just start over!



What happens if failure?

• Could try to recover? Back up a node?
• Very tricky!
• Just start over!

• Private method:
• try_remove
• remove loops on try_remove until it succeeds



What about deletion?



Can threads that remove a node delete it?

b d ea

add(c)



b d ea

remove(b)

Can threads that remove a node delete it?



b d ea

remove(b)

delete b?

Can threads that remove a node delete it?



b d ea

add(c)

still on b!

Can threads that remove a node delete it?



Our own garbage collector

b d ea

remove(b)
Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:



Our own garbage collector

d ea

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete: b



Our own garbage collector

d ea

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:

remove(e)

b



Our own garbage collector

da

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:

remove(e)

eb



Our own garbage collector

da

maintain a list to delete: b e

add(c)

Garbage collector lock:



Our own garbage collector

da

maintain a list to delete: b e

add(c)

Garbage collector lock:

Similar to a reader/writer lock:
Allows an arbitrary number of threads that operate on the list
Only 1 garbage collector thread
Erases the list of nodes

Clean
up?



Garbage collector lock

• Many strategies!
• A big research area ~10 years ago

• Strat 1: Threads always try once to take the garbage collector lock:
• if failed, no worries, the next operation will get a chance
• if succeeded, then there was no contention
• can starve garbage collection

• Strat 2: Wait until size grows to a threshold:
• Wait on the lock (hope for a fair implementation!)
• Can cause performance spikes



Back to the linked list

What if 2 threads try to add a node in the same position?



What Else Could Go Wrong?

b d ea

add(c) Aha!



What Else Coould Go Wrong?

b d ea

add(c)
add(b’)



What Else Coould Go Wrong?

b d ea

add(c)
add(b’)b’



What Else Could Go Wrong?

b d ea

add(c)
b’



What Else Could Go Wrong?

b d ea

add(c)

c
Validation passes!



Validate Part 2
(while holding locks)

b d ea

add(c) Yes, b still 
points to d



Summary

• We traverse without lock
• Traversal may access nodes that are locked
• Its okay because we have atomic pointers!

• We might traverse deleted nodes
• Its okay because we validate after we obtain locks
• Two validations: 

• our node is still reachable (it was not deleted)
• Our insertion point is still valid (no thread has inserted in the meantime)

• We don’t actually free node memory, but we put them in a list to be freed 
later



Enjoy your weekend!

• On Monday: making the list lock-free!

• Get HW 2 in and look for midterm grades


