
CSE113: Parallel Programming
Feb. 17, 2023

• Topics:
• Parallel schedules for DOALL loops

• Static schedules
• global workstealing
• local workstealing

0 1 3 4

thread 1thread 0

Queue 0 Queue 1

Announcements

• HW1 grades are out!
• Please let us know if there are issues

• Homework 2 was due on Monday
• We will start grading and try to get grades in soon

• Homework 3 is released
• Should be able to do all parts by the end of today
• Due Feb 23 + 4 days = Feb 27

Announcements

• Midterm out!
• Due tonight at 6.
• Open note, open internet (to a reasonable extent: no googling exact

questions or asking questions on forums or ChatGPT)
• do not discuss with classmates AT ALL while the test is active
• No late tests will be accepted.

• You can ask clarifying questions about the midterm (as private Piazza
posts). We will not comment on your answers or give any hints.

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

Circular buffers in Producer/Consumer
queues

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

we will assume modular
arithmetic:

if x = (SIZE - 1) then
x + 1 == 0;

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail:

enq to the head, deq from the
tail

tail

head

valid items in the
queue

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

tail

head

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head + 1 == tail

tail

head

...

wasting one
location, but its okay...

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the
queue

Do these need to be atomic RMWs?

DOALL Loops

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results

• Most importantly: you can do the iterations in parallel!
• Assign each thread a set of indices to compute

DOALL Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop?

Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop? How should we parallelize it?

Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

• Which one is more efficient?

Parallel Schedules

• Which one is more efficient?

• These are called Parallel Schedules for DOALL Loops
• We will discuss several of them.

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4

Thread 0 Thread 1 Thread N

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

void parallel_loop(..., int tid, int num_threads)
{

for (int x = 0; x < SIZE; x++) {
// work based on x

}
}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

determine chunk size in new function

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
for (int x = 0; x < SIZE; x++) {
// work based on x

}
}

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

Set new loop bounds

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

void foo() {
...
for (int t = 0; t < NUM_THREADS; t++) {
spawn(parallel_loop(..., t, NUM_THREADS))

}
join();

...
}

• Works well when loop iterations take similar amounts of time

Spawn threads

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

You will need to adapt the thread spawn, join
to C++

Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = ?

0: start = ?

0: end = ?

1: start = ?

1: end = ?

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

End example

Static schedule

• Example, 2 threads/cores, array of size 9

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = ?

0: start = ?

0: end = ?

1: start = ?

1: end = ?

8

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = ?

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

last thread gets more work

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 9

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

last thread gets more work

What is the worst case?

End example

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9 ceiling division, this will distribute
uneven work in the last thread to all
other threads

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

8

• Example, 2 threads/cores, array of size 9

9

out of bounds

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

8

• Example, 2 threads/cores, array of size 9

9

out of bounds

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)

for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 9

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)

for (int x = start; x < end; x++) {
// work based on x

}
}

most threads do equal amounts
of work, last thread may do less.

Which one is better/worse?
Max slowdown for last thread does all
the extra work?

Max slowdown for ceiling?

End example

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Irregular parallelism in loops

• Tasks are not balanced

• Appears in lots of emerging workloads

Irregular parallelism in loops

• Tasks are not balanced

• Appears in lots of emerging workloads

social network analytics where threads are parallel across users

Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute.

• Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

irregular (or unbalanced) parallelism:
each x iteration performs different
amount of work.

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by second thread:

t2_work = total_work − t1_work

Irregular parallelism in loops

Example: SIZE = 64

total_work = 2016
t2_work = 496
t1_work = 1520

t1 does ~3x more work than t2

Only provides ~1.3x speedup

Potential solution:
Have T1 do only ¼ of the iterations
Gives a better speedup of 1.77x

Not a feasible solution because often times load
imbalance is not given by a static equation on loop
bounds!

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by second thread:

t2_work = total_work − t1_work

Work stealing

• Tasks are dynamically assigned to threads.

Work stealing - global implicit worklist

• Pros
• Simple to implement

• Cons:
• High contention on global counter
• Potentially bad memory locality.

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

cannot color initially!

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1

2 3 4 5 6 7 SIZE -1

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

Dynamically take the next iteration

thread 1thread 0 1 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 2

3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 3

4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

34

5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks

End example

Work stealing - global implicit worklist

• How to implement

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Work stealing - global implicit worklist

• How to implement

void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Replicate code in a new function. Pass all needed variables as arguments.

Work stealing - global implicit worklist

• How to implement

move loop variable to be a global atomic variable

atomic_int x(0);
void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Work stealing - global implicit worklist

• How to implement

change loop bounds in new function to use a local variable using global variable.

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = ??
local_x < SIZE;
local_x = ??) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Work stealing - global implicit worklist

• How to implement

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

These must be
atomic updates!

change loop bounds in new function to use a local variable using global variable.

Work stealing - global implicit worklist

• How to implement

Spawn threads in original function and join them afterwards

void foo() {
...
for (t = 0; x < THREADS; t++) {
spawn(parallel_loop);

}
join();
...

}

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

You will have to change to C++ syntax for the homework!

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

x: 0
0 - local_x - UNDEF
1 - local_x - UNDEF

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1

2 3 4 5 6 7 SIZE -1

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 2

3 4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 4
0 - local_x - 0
1 - local_x - 3

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 3

4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 4
0 - local_x - 0
1 - local_x - 3

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

thread 1thread 0

x: 4
0 - local_x - 0
1 - local_x - 3

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

atomic_int(x);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

thread 1thread 0

x: 5
0 - local_x - 4
1 - local_x - 3

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

34

5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 5
0 - local_x - 4
1 - local_x - 3

thread 1thread 0

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Work stealing - local worklists

• More difficult to implement

• low contention on local data-structures

• potentially better cache locality

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

• local worklists: divide tasks into different worklists for each thread

0 1 3 4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

3

4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1 4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1 4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

thread 1thread 0

steal!

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0 1

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• How to implement:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

• How to implement:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a new function, taking any variables used in loop body as args. Additionally take in a thread id

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

What type of queues?

• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

What type of queues?
We’re going to use InputOutput Queues!

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

Input/output Queues

indexes

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

input phase

Input/output Queues

indexes

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

0 1 2 3

input phase

Input/output Queues

indexes

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

0 1 2 3

input phase

output phase

Input/output Queues

indexes

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...

...
}

First we need to initialize the queues

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// Spawn threads to initialize
// join initializing threads

...
}

void parallel_enq(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// Spawn threads to initialize
// join initializing threads

...
}

void parallel_enq(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing

Make sure to account for boundary conditions!

• How to implement in a compiler:

Work stealing - local worklists

void parallel_enq(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing

Make sure to account for boundary conditions!

0 1 2 3x

0 0 1 1tid

NUM_THREADS = 2;
SIZE = 4;
CHUNK = 2;

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

void parallel_loop(..., int tid, int num_threads) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

How do we modify the parallel loop?

Work stealing - local worklists

void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

loop until the queue is empty

Work stealing - local worklists

void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

loop until the queue is empty
Are we finished?

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);

}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

Track how many threads are finished

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

While there are threads that are still working

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

pick a random target and steal a task

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
// join loop threads
...

}

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
// join loop threads
...

}

join the threads

thread 1thread 0

Work stealing - local worklists

0 1 3 4

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

thread 1thread 0

Work stealing - local worklists

0 1 3 4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

thread 1thread 0

Work stealing - local worklists

0

1

3

4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

thread 1thread 0

Work stealing - local worklists

0

1 4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

thread 1thread 0

Work stealing - local worklists

0

1

4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

Work stealing - local worklists

0

1

thread 1thread 0

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0 1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

1

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

1

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

finished!

Work stealing - local worklists

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Next week

• generalized concurrent objects

• Get midterm turned in

• Get started on HW 3

• See you on Wednesday

