
CSE113: Parallel Programming
Feb. 17, 2023

• Topics: 
• Parallel schedules for DOALL loops

• Static schedules
• global workstealing
• local workstealing
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Announcements 

• HW1 grades are out!
• Please let us know if there are issues

• Homework 2 was due on Monday
• We will start grading and try to get grades in soon

• Homework 3 is released
• Should be able to do all parts by the end of today
• Due Feb 23 + 4 days = Feb 27



Announcements 

• Midterm out!
• Due tonight at 6.
• Open note, open internet (to a reasonable extent: no googling exact 

questions or asking questions on forums or ChatGPT)
• do not discuss with classmates AT ALL while the test is active
• No late tests will be accepted.

• You can ask clarifying questions about the midterm (as private Piazza 
posts). We will not comment on your answers or give any hints.
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Review



Circular buffers in Producer/Consumer 
queues



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in 
order and
wrap around

we will assume modular
arithmetic:

if x = (SIZE - 1) then
x + 1 == 0;



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle
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Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

indexes will
circulate in 
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head  + 1 == tail

tail

head

...

wasting one
location, but its okay...



enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room 
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the 
queue

Do these need to be atomic RMWs?



DOALL Loops



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results

• Most importantly: you can do the iterations in parallel!
• Assign each thread a set of indices to compute



DOALL Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}



Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists



Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute 

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop?



Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute 

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop? How should we parallelize it?



Parallel Schedules
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Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange
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Parallel Schedules

• Which one is more efficient?



Parallel Schedules

• Which one is more efficient?

• These are called Parallel Schedules for DOALL Loops
• We will discuss several of them.



Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4

Thread 0 Thread 1 Thread N



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

void parallel_loop(..., int tid, int num_threads) 
{

for (int x = 0; x < SIZE; x++) {
// work based on x

}
}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

determine chunk size in new function

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
for (int x = 0; x < SIZE; x++) {
// work based on x

}
}



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

Set new loop bounds

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

void foo() {
...
for (int t = 0; t < NUM_THREADS; t++) {
spawn(parallel_loop(..., t, NUM_THREADS))

}
join();

...
}

• Works well when loop iterations take similar amounts of time

Spawn threads

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

You will need to adapt the thread spawn, join
to C++



Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = ?

0: start = ?

0: end = ?

1: start = ?

1: end = ?

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



End example



Static schedule

• Example, 2 threads/cores, array of size 9

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = ?

0: start = ?

0: end = ?

1: start = ?

1: end = ?

8

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size; 
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = ?

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size; 
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

last thread gets more work



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 9

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size; 
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

last thread gets more work

What is the worst case?



End example



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9 ceiling division, this will distribute
uneven work in the last thread to all
other threads

void parallel_loop(..., int tid, int num_threads) 
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

8

• Example, 2 threads/cores, array of size 9

9

out of bounds

void parallel_loop(..., int tid, int num_threads) 
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

8

• Example, 2 threads/cores, array of size 9

9

out of bounds

void parallel_loop(..., int tid, int num_threads) 
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)

for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 9

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads) 
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)

for (int x = start; x < end; x++) {
// work based on x

}
}

most threads do equal amounts
of work, last thread may do less.

Which one is better/worse?
Max slowdown for last thread does all
the extra work?

Max slowdown for ceiling?



End example



Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists



Irregular parallelism in loops

• Tasks are not balanced

• Appears in lots of emerging workloads



Irregular parallelism in loops

• Tasks are not balanced

• Appears in lots of emerging workloads

social network analytics where threads are parallel across users  



Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute. 

• Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

irregular (or unbalanced) parallelism:
each x iteration performs different 
amount of work.



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by second thread:

t2_work = total_work − t1_work



Irregular parallelism in loops

Example: SIZE = 64

total_work = 2016
t2_work = 496
t1_work = 1520

t1 does ~3x more work than t2

Only provides ~1.3x speedup

Potential solution:
Have T1 do only ¼ of the iterations
Gives a better speedup of 1.77x

Not a feasible solution because often times load 
imbalance is not given by a static equation on loop 
bounds!

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by second thread:

t2_work = total_work − t1_work



Work stealing

• Tasks are dynamically assigned to threads. 



Work stealing - global implicit worklist

• Pros
• Simple to implement

• Cons:
• High contention on global counter
• Potentially bad memory locality.



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

cannot color initially!
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• Global worklist: threads take tasks (iterations) dynamically 
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thread 1thread 0
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• Global worklist: threads take tasks (iterations) dynamically 

0 1

2 3 4 5 6 7 SIZE -1

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

Dynamically take the next iteration

thread 1thread 0 1 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 2

3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

3 4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 
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thread 1thread 0 1 2 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 
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thread 1thread 0 1 2 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

34

5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks



End example



Work stealing - global implicit worklist

• How to implement

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



Work stealing - global implicit worklist

• How to implement

void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Replicate code in a new function. Pass all needed variables as arguments.



Work stealing - global implicit worklist

• How to implement

move loop variable to be a global atomic variable

atomic_int x(0);
void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



Work stealing - global implicit worklist

• How to implement

change loop bounds in new function to use a local variable using global variable.

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = ??
local_x < SIZE; 
local_x = ??) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



Work stealing - global implicit worklist

• How to implement

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

These must be
atomic updates!

change loop bounds in new function to use a local variable using global variable.



Work stealing - global implicit worklist

• How to implement

Spawn threads in original function and join them afterwards

void foo() {
...
for (t = 0; x < THREADS; t++) {
spawn(parallel_loop);

}
join();
...

}

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

You will have to change to C++ syntax for the homework!



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

x: 0
0 - local_x - UNDEF
1 - local_x - UNDEF

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1

2 3 4 5 6 7 SIZE -1

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 2

3 4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
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Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 
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4 5 6 7 SIZE -1

atomic_int(x);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

thread 1thread 0

x: 5
0 - local_x - 4
1 - local_x - 3



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

34

5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1); 
local_x < SIZE; 
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 5
0 - local_x - 4
1 - local_x - 3

thread 1thread 0



Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists



Work stealing - local worklists

• More difficult to implement

• low contention on local data-structures

• potentially better cache locality



• local worklists: divide tasks into different worklists for each thread
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• local worklists: divide tasks into different worklists for each thread
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• local worklists: divide tasks into different worklists for each thread
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thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1



• How to implement:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



• How to implement:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a new function, taking any variables used in loop body as args. Additionally take in a thread id

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}



• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}
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Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

What type of queues?



• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

What type of queues?
We’re going to use InputOutput Queues!



• local worklists: divide tasks into different worklists for each thread
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• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

0 1 2 3

input phase

output phase

Input/output Queues

indexes



Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...

...
}

First we need to initialize the queues



Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// Spawn threads to initialize
// join initializing threads

...
}

void parallel_enq(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing 



Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// Spawn threads to initialize
// join initializing threads

...
}

void parallel_enq(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing 

Make sure to account for boundary conditions!



• How to implement in a compiler:

Work stealing - local worklists

void parallel_enq(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing 

Make sure to account for boundary conditions!

0 1 2 3x

0 0 1 1tid

NUM_THREADS = 2;
SIZE = 4;
CHUNK = 2;



Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

void parallel_loop(..., int tid, int num_threads) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

How do we modify the parallel loop?



Work stealing - local worklists

void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

loop until the queue is empty



Work stealing - local worklists

void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

loop until the queue is empty
Are we finished?



Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);

}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

Track how many threads are finished



Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

While there are threads that are still working



Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

pick a random target and steal a task



Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
// join loop threads
...

}



Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
// join loop threads
...

}

join the threads



thread 1thread 0
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}

}
}
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}

}
}
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atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {
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atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
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// perform task
}
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}
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finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
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Work stealing - local worklists
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thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

finished!
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thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}



Next week

• generalized concurrent objects

• Get midterm turned in

• Get started on HW 3

• See you on Wednesday


