
CSE113: Parallel Programming
Feb. 15, 2023

• Topics: 
• Producer consumer queues

• Circular buffer

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head



Announcements 

• HW1 grades are out!
• Please let us know if there are issues

• Homework 2 was due on Monday
• We will start grading and try to get grades in 2 weeks

• Homework 3 is released
• You can finish part 1 after today
• Part 2 may need to wait until Friday
• Due Feb 23 + 4 days = Feb 27



Announcements 

• Midterm out!
• asynchronous, 1 work week; Monday through Friday; no time limit
• Open note, open internet (to a reasonable extent: no googling exact 

questions or asking questions on forums or ChatGPT)
• do not discuss with classmates AT ALL while the test is active
• No late tests will be accepted.

• You can ask clarifying questions about the midterm (as private Piazza 
posts). We will not comment on your answers or give any hints.



Previous quiz



Previous quiz



Review



Input/Output Queues



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

Thread 0:
enq(6);

Thread 1:
enq(7);

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

Thread 0:
enq(6);

Thread 1:
enq(7);

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

does it matter which order 
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end



7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order 
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end



6 7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order 
threads add their data? No! 
Because there are no deqs!

Thread 0:
enq(6);

Thread 1:
enq(7);

end



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to deq an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read 
data

How to implement
a stack?



does the list need
to be atomic?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

int deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

Is this queue thread safe?

Is this queue lock free?



Synchronous Producer Consumer Queues



Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}



Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}



Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}



Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}



Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}



Schedule

• Producer Consumer Queues
• Synchronous
• Circular buffer



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

no waiting for producer (while there is room)



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

7

no waiting for producer (while there is room)



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 7

no waiting for producer (while there is room)



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

89

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 8

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

finishes



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

910

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

returns 9



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10



Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();
deq();

blocks when there is nothing in the
queue



Producer Consumer Queues

• How do we implement it?



Producer Consumer Queues

• Start with a fixed size array



Producer Consumer Queues

• Start with a fixed size array

We will use what is called a circular buffer method



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

3

...



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in 
order and
wrap around



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in 
order and
wrap around

we will assume modular
arithmetic:

if x = (SIZE - 1) then
x + 1 == 0;



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in 
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in 
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail:

enq to the head,  deq from the 
tail

tail

head

valid items in the 
queue



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in 
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

tail

head



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in 
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

tail

head



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

indexes will
circulate in 
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

but then
how to tell
full queue from
empty?

tail

head

3



Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

indexes will
circulate in 
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head  + 1 == tail

tail

head

...

wasting one
location, but its okay...



class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3



class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}



class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

This looks like the two threads don’t even share
head and tail! What is missing?



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

what happens if we try to dequeue here?



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}



0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

What value is 
stored here?



enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

similarly for enqueue
but why can’t we enqueue?



enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

incrementing the head would make it empty!



enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

we need to wait for there
to be room



enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room 
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the 
queue



enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room 
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the 
queue

Do these need to be atomic RMWs?



Next topic

• Work stealing



Schedule

• Workstealing
• DOALL Loops
• Parallel Schedules

• Static schedule
• Global worklist
• Local worklists



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {
a[i] = b[i] + c[i];

}

for (int i = SIZE-1; i >= 0; i--) {
a[i] += a[i+1]

}

are they the same if you traverse them backwards?



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {
a[i] = b[i] + c[i];

}

for (int i = SIZE-1; i >= 0; i--) {
a[i] += a[i+1]

}

are they the same if you traverse them backwards?

No!



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (pick i randomly) {
a[i] = b[i] + c[i];

}

for (pick i randomly) {
a[i] += a[i+1]

}

what about a random order?



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (pick i randomly) {
a[i] = b[i] + c[i];

}

for (pick i randomly) {
a[i] += a[i+1]

}

what about a random order?

No!



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results



for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results

• Most importantly: you can do the iterations in parallel!
• Assign each thread a set of indices to compute



DOALL Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently



DOALL Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 0; i < dim1; i++) { 
for (int j = 0; j < dim3; j++) { 
for (int k = 0; k < dim2; k++) { 
a[i][j] += b[i][k] * c[k][j]; 

} 
} 

}

matrix multiplication
example



DOALL Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1



DOALL Loops

• Given a nest of candidate For loops, determine if we can we make the 
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result



Safety Criteria

• How do we check this? 
• If the property doesn’t hold then there exists 2 iterations, such that if they are 

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the 
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from 
the location written to by another iteration.



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable
Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy) 



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy) 

Why? 
Because if 
index(ix) == index(iy) 
then:
a[index(ix)] will equal 
either loop(ix) or loop(iy) 
depending on the order



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 

Why?

if ix iteration happens first, then 
iteration iy reads an updated value.

if iy happens first, then it reads the 
original value



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}



Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}



Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists



Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute 

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop?



Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute 

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop? How should we parallelize it?



Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c



Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation 
can easily be 
divided into 
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Parallel Schedules

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation 
can easily be 
divided into 
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation 
can easily be 
divided into 
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Parallel Schedules

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation 
can easily be 
divided into 
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Parallel Schedules

• Which one is more efficient?



Parallel Schedules

• Which one is more efficient?

• These are called Parallel Schedules for DOALL Loops
• We will discuss several of them.



Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4

Thread 0 Thread 1 Thread N



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

void parallel_loop(..., int tid, int num_threads) 
{

for (int x = 0; x < SIZE; x++) {
// work based on x

}
}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

determine chunk size in new function

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
for (int x = 0; x < SIZE; x++) {
// work based on x

}
}



Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

Set new loop bounds

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

void foo() {
...
for (int t = 0; t < NUM_THREADS; t++) {
spawn(parallel_loop(..., t, NUM_THREADS))

}
join();

...
}

• Works well when loop iterations take similar amounts of time

Spawn threads

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

You will need to adapt the thread spawn, join
to C++



Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = ?

0: start = ?

0: end = ?

1: start = ?

1: end = ?

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

void parallel_loop(..., int tid, int num_threads) 
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}



End example



Next lecture

• Work stealing and generalized concurrent objects

• Get HW 2 turned in today!

• HW 3 is out today. You can get started on Part 1

• Work on midterm


