
CSE113: Parallel Programming
Feb. 13, 2023

• Topics:
• Input/output queues
• Producer consumer queues

• Synchronous
• Circular buffer

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

Announcements

• HW1 grades will be out by the end of the day
• Let us know ASAP if there are issues

• Homework 2 has a last due date today
• We will keep an eye on Piazza and try to ask questions asked before 5 pm

• Homwork 3 will be released today by midnight
• Due in 10 days + 4 free late days

Announcements

• Midterm out!
• asynchronous, 1 week (no time limit)
• Open note, open internet (to a reasonable extent: no googling exact

questions or asking questions on forums)
• do not discuss with classmates AT ALL while the test is active
• No late tests will be accepted.

• Prioritize midterm next week!

Previous quiz

Previous quiz

Review

Linearizability

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

slider game!

try to slide the linearization
point within its range
to justify the outcome

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

This is allowed now!

Linearizability

• How do we write our programs to be linearizable?
• Identify the linearizability point
• One indivisible region (e.g. an atomic store, atomic load, atomic RMW, or

critical section) where the method call takes effect. Modeled as a point.

object state: M object state: M’

empty queue enq(1) queue contains 1

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M

bank_account is 0 buy_coffee() bank_account is -1

object state: M’

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released
lets say released.

Linearizability

• Our lock-free bank account is
linearizable:
• The atomic operation is the

linearizable point

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
atomic_fetch_add(&balance, -1);

}

void get_paid() {
atomic_fetch_add(&balance, 1);

}

private:
atomic_int balance;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

atomic_fetch_add

Input/Output Queues

Concurrent Queues

• List of items, accessed in a first-in first-out (FIFO) way
• duplicates allowed
• Methods
• enq(x) put x in the list at the end
• deq() remove the item at the front of the queue and return it.
• size() returns how many items are in the queue

Concurrent Queues

• General implementation given in Chapter 10 of the book.
• Similar types of reasoning as the linked list
• Lots of reasoning about node insertion, node deletion
• Using atomic RMWs (CAS) in clever ways

• We will think about specialized queues
• Implementations can be simplified!

Input/Output Queues

• Queue in which multiple threads read (deq), or write (enq), but not
both.

• Why would we want a thing?

• Computation done in phases:
• First phase prepares the queue (by writing into it)
• All threads join
• Second phase reads values from the queue.

Input/Output Queues

• Example: Information flow in graph applications:

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

source 0 source 1

initial

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5

queue 1

queue 0

input

output

concurrent enqueues!

source 0 source 1

thread 0 thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6

queue 1

queue 0

input

output

source 0 source 1

thread 0
thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

thread 0

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

join all threads and clear input
source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

swap!

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0
thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

queue 1

queue 0

input

output

and so on...

source 0 source 1

Implementation

Implementation

Allocate a contiguous array

Pros:
?

Cons:
?

Implementation

Allocate a contiguous array

Pros:
+ fast!
+ we can use indexes instead of addresses

Cons:
- need to reason about overflow!

Note on terminology

• Head/tail - often used in queue implementations, but switches when
we start doing circular buffers.

• Front/end - To avoid confusion, we will use front/end for input/output
queues.

Implementation

end

Implementation

What happens if a thread wants
to add an element?end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:

end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment end

end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment end

reserved!

end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

reserved!

end

16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

end

16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

done!

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

Two threads cannot reserve the same space!
We’ve seen this before

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

Thread 0:
enq(6);

Thread 1:
enq(7);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

Thread 0:
enq(6);

Thread 1:
enq(7);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end

7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end

6 7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order
threads add their data? No!
Because there are no deqs!

Thread 0:
enq(6);

Thread 1:
enq(7);

end

class InputOutputQueue {
private:

atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

int size() {
return end.load();

}
}

How to protect against overflows?

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

end

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();

data index
T0

data index
T1

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read
data

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read
data

How to implement
a stack?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return ??;

}
}

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return ??;

}
}

How about size?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

how about size?

how do we reset?

how about size?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

how do we reset?
Reset front and end

how about size?

does the list need
to be atomic?

how do we reset?
Reset front and end

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

Schedule

• Producer Consumer queues
• Synchronous
• Circular buffer

Producer Consumer Queues

• 1 enq, 1 deq
• enq’er cannot deq
• deq’er cannot enq

• Example: printf:
• your program equeues values to print
• the terminal process dequeues values and prints them

Synchronous Producer Consumer Queues

• First implementation:
• Synchronous
• Slow
• Good for debugging

Synchronous Producer Consumer Queues

• First implementation:
• Synchronous
• Slow
• Good for debugging

• enq does not return until value is deq’ed

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait
returns 7

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

both can continue

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();

wait

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();7

wait
pushes 7

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();7

returns 7
pushes 7

They both can continue

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appear

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

first
prepare
the box

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

then set
the flag

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

then set
the flag

now the consumer can read from the box!

Synchronous Producer Consumer Queues

Producer Thread
enq(7); Consumer Thread

deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7); Consumer Thread

deq();
deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

what happens
when there are
two deqs?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

what happens in the
next deq?

How to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}what happens in the

next deq?

How to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

waiting like we are
supposed to

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

reset (now with extra enq)

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

extra enq

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

8

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

7 was dropped!

how to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

8

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

7 was dropped!

how to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

reset

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Schedule

• Producer Consumer Queues
• Synchronous
• Circular buffer

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

7

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 7

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

89

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 8

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

finishes

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

910

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

returns 9

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();
deq();

blocks when there is nothing in the
queue

Producer Consumer Queues

• How do we implement it?

Producer Consumer Queues

• Start with a fixed size array

Producer Consumer Queues

• Start with a fixed size array

We will use what is called a circular buffer method

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

3

...

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

we will assume modular
arithmetic:

if x = (SIZE - 1) then
x + 1 == 0;

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail:

enq to the head, deq from the
tail

tail

head

valid items in the
queue

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

tail

head

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

tail

head

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

but then
how to tell
full queue from
empty?

tail

head

3

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head + 1 == tail

tail

head

...

wasting one
location, but its okay...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

This looks like the two threads don’t even share
head and tail! What is missing?

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

what happens if we try to dequeue here?

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

similarly for enqueue
but why can’t we enqueue?

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

incrementing the head would make it empty!

enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

we need to wait for there
to be room

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the
queue

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the
queue

Do these need to be atomic RMWs?

Next week

• Work stealing and generalized concurrent objects

• Get HW 2 turned in today!

• HW 3 is out today. You can get started on Part 1

• Prepare for midterm on Monday

