
CSE113: Parallel Programming
Feb. 10, 2023

• Topics:
• Concurrent data structure

specifications
• Sequential consistency
• Breaking sequential consistency
• Linearizability

Announcements

• Expect HW1 grades by Moday
• Let us know if there are any issues ASAP

• Homework 2 was due, but you have until Monday
• Please use office hours or piazza if you have questions
• Remember, nights and weekends have no guarantees of responses.

• Homework 3 is scheduled for Monday release

Announcements

• Midterm is released on Monday
• asynchronous, Monday morning to Friday night
• no time limit
• Open note, open internet (to a reasonable extent: no googling exact

questions or asking questions on forums or chatGPT)
• do not discuss with classmates AT ALL while the test is active
• No late tests will be accepted.

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

Concurrent Data Structures

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

global variables:

int tylers_account = 0;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;

what happens if
we run these
concurrently?

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
m.lock();
tylers_account.buy_coffee();
m.unlock();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
m.lock();
tylers_account.get_paid();
m.unlock();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;
mutex m;

The object is not “thread safe”

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

global variables:

bank_account tylers_account;

The object is “thread safe”

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
atomic_fetch_add(&balance, -1);

}

void get_paid() {
atomic_fetch_add(&balance, 1);

}

private:
atomic_int balance;

};

global variables:

bank_account tylers_account;

The object is “non-locking”

3 dimensions for concurrent objects

• Correctness:
• How should concurrent objects behave (Specification)

• Performance:
• How to make things fast fast fast!

• Fairness:
• Under what conditions can concurrent objects deadlock

Sequential Consistency

• Our first specification

Lets think about a Queue

What is a queue?

We consider 2 API functions:
• enq(value v) - enqueues the value v
• deq() - returns the value at the front of the queue

Queue<int> q;
q.enq(6);
int t = q.deq();

Queue<int> q;
q.enq(6);
q.enq(7);
int t = q.deq();

Queue<int> q;
q.enq(6);
q.enq(7);
int t = q.deq();
int t1 = q.deq();

Lets think about a Queue

What is a queue?

We consider 2 API functions:
• enq(value v) - enqueues the value v
• deq() - returns the value at the front of the queue

Queue<int> q;
int t = q.deq();

Let’s say: value of 0

Lets think about a Queue

This is called a sequential specification:

The sequential specification is nice! We want to base our concurrent
specification on the sequential specification

We will have to deal with the non-determinism of concurrency

Thinking about a concurrent queue

Queue<int> q;
q.enq(6);
q.enq(7);
int t = q.deq();

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);
int t = q.deq();

Global variable:
CQueue<int> q; Lets call our concurrent queue “CQueue”

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

what can be stored in t after this concurrent program?

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

what can be stored in t after this concurrent program?
Can t be 256?

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

what can be stored in t after this concurrent program?
Can t be 256? it should be one of {None, 6, 7}

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

t is 6

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

t is 6 t is 6

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

t is Nonet is 6 t is 6

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

t is Nonet is 6 t is 6

Can t ever
be 7?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

int t = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

int t = q.deq();

q.enq(6);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

int t = q.deq();

q.enq(6);

The events of Thread 0
don’t appear in the same
order of the program!

This should not be allowed!

Sequential Consistency

• Valid executions correspond a
sequentialization of object method calls

• The sequentialization must respect per-thread
”program order”, the order in which the
object method calls occur in the thread

• Events across threads can interleave in any
way possible

Sequential Consistency

• Valid executions correspond a
sequentialization of object method calls

• The sequentialization must respect per-thread
”program order”, the order in which the
object method calls occur in the thread

• Events across threads can interleave in any
way possible

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

Sequential Consistency

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

Reminder that N and M are events, not instructions

Sequential Consistency

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

Reminder that N and M are events, not instructions

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

time

If N and M execute 150 events each, there are more
possible executions than particles in the observable universe!

Don’t think about all possible interleavings!

• Higher-level reasoning:
• I get paid 100 times and buy 100 coffees, I should break even
• If you enqueue 100 elements to a queue, you should be able to dequeue 100

elements

• Reason about a specific outcome
• Find an interleaving that allows the outcome
• Find a counter example

Reasoning about concurrent objects

To show that an outcome is possible, simply construct the sequential
sequence

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?

q.enq(6);
int t0 = q.deq();

int t1 = q.deq();
q.enq(7);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?q.enq(6);

int t0 = q.deq();

int t1 = q.deq();

q.enq(7);

Valid execution!

Are there others?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

Lets do another!

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

Lets do another!

q.enq(6);
int t0 = q.deq();

int t1 = q.deq();
q.enq(7);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

q.enq(6);

int t0 = q.deq();

q.enq(7);

int t1 = q.deq();

Found one! Are there others?
Can t0 == 6 and t1 == 7?

Reasoning about concurrent objects

To show that an outcome is possible, simply construct the sequential
sequence

To show that an outcome is impossible show that there is no possible
sequential sequence

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

q.enq(6);

int t0 = q.deq();

q.enq(7);
int t1 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

q.enq(6);

int t0 = q.deq();

q.enq(7);

int t1 = q.deq();

No place for this event to go!

One more example

Thread 0:
s.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> q;

Thread 1:
int t1 = q.deq();

Is it possible for both t0 and t1 to be 0 at the end?

Thread 0:
s.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> q;

Thread 1:
int t1 = q.dec();

Is it possible for both t0 and t1 to be 0 at the end?

int t0 = q.deq();

int t1 = q.dec();

q.enq(7);

Do we have our specification?

• Is sequential consistency a good enough specification for concurrent
objects?

• It’s a good first step, but relative timing interacts strangely with
absolute time.

• We will need something stronger.

Schedule

• Problems with sequential consistency

• Linearizability

• Specialized concurrent queues

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

each method as a start, and end time stamp

q.enq(7)

method is called

method returns

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This timeline seems
strange...

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

q.enq(6);

q.deq() == 6

q.enq(7);

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

p.enq(11)

p.deq() == 12

p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

q.enq(2)

q.deq() == 2

q.enq(1)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

Now consider them all together

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2);

q.enq(1);

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2);

q.enq(1);

No place for this one to go!

What does this mean?

• Even if objects in isolation are sequentially consistent

• Programs composed of multiple objects might not be!

• We would like to be able to use more than 1 object in our programs!

Schedule

• Problems with sequential consistency

• Linearizability

• Specialized concurrent queues

Linearizability

• Linearizability
• Defined in term of real-time histories
• We want to ask if an execution is allowed under linearizability

• Slightly different game:
• sequential consistency is a game about stacking lego bricks
• linearizability is about sliders

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

empty queue enq(1) queue contains 1

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

queue contains [1,2] deq() queue contains [1], deq returns 2.

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

queue contains [1,2] peek() return value from M, i.e. 2

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

slider game!

try to slide the linearization
point within its range
to justify the outcome

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

This is allowed now!

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

allowed!
Guaranteed?

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

guaranteed?

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==??

guaranteed?

Linearizability

• We spent a bunch of time on SC... did we waste our time?
• No!
• Linearizability is strictly stronger than SC. Every linearizable execution is SC,

but not the other way around.

• If a behavior is disallowed under SC, it is also disallowed under linearizability.

Linearizability

• How do we write our programs to be linearizable?
• Identify the linearizability point
• One indivisible region (e.g. an atomic store, atomic load, atomic RMW, or

critical section) where the method call takes effect. Modeled as a point.

object state: M object state: M’

empty queue enq(1) queue contains 1

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M

bank_account is 0 buy_coffee() bank_account is -1

object state: M’

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released
lets say released.

Linearizability

• Our lock-free bank account is
linearizable:
• The atomic operation is the

linearizable point

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
atomic_fetch_add(&balance, -1);

}

void get_paid() {
atomic_fetch_add(&balance, 1);

}

private:
atomic_int balance;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

atomic_fetch_add

Lecture schedule

• Linearizablity

• Progress Properties

• Implementing a set

Progress properties

• Going back to specifications:

Thread 0

Thread 1

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Progress properties

• Going back to specifications:

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Thread 0

Thread 1

Progress properties

• Going back to specifications:

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Thread 0

Thread 1

mutexes have a blocking specification

Progress properties

• Going back to specifications:

mutex request mutex acquire

mutex request

Recall the mutex

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Thread 0

Thread 1

What now?!

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

for mutexes, the specification required that the system hang.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

for mutexes, the specification required that the system hang.
no such specification here.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Non-blocking specification:
Every thread is allowed to continue executing
REGARDLESS of the behavior of other threads

for mutexes, the specification required that the system hang.
no such specification here.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Non-blocking specification:
Every thread is allowed to continue executing
REGARDLESS of the behavior of other threads

This is a specification property, not an implementation
property! You can implement your concurrent objects
with locks and have a “blocking implementation”.

But that is because of implementation choice, not because
of specification requirements.

Terminology overview

• Thread-safe object:

• Lock-free object:

• Blocking specification:

• Non-blocking specification:

• (non-)blocking implementation:

Terminology overview

• Sequential consistency:

• Linearizability:

• Linearizability point:

Schedule

• Problems with sequential consistency

• Linearizability

• Specialized concurrent queues

Concurrent Queues

• List of items, accessed in a first-in first-out (FIFO) way
• duplicates allowed
• Methods
• enq(x) put x in the list at the end
• deq() remove the item at the front of the queue and return it.
• size() returns how many items are in the queue

Concurrent Queues

• General implementation given in Chapter 10 of the book.
• Similar types of reasoning as the linked list
• Lots of reasoning about node insertion, node deletion
• Using atomic RMWs (CAS) in clever ways

• We will think about specialized queues
• Implementations can be simplified!

Input/Output Queues

• Queue in which multiple threads read (deq), or write (enq), but not
both.

• Why would we want a thing?

• Computation done in phases:
• First phase prepares the queue (by writing into it)
• All threads join
• Second phase reads values from the queue.

Input/Output Queues

• Example: Information flow in graph applications:

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

source 0 source 1

initial

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5

queue 1

queue 0

input

output

concurrent enqueues!

source 0 source 1

thread 0 thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6

queue 1

queue 0

input

output

source 0 source 1

thread 0
thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

thread 0

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

join all threads and clear input
source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

swap!

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0
thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

queue 1

queue 0

input

output

and so on...

source 0 source 1

Implementation

Implementation

Allocate a contiguous array

Pros:
?

Cons:
?

Implementation

Allocate a contiguous array

Pros:
+ fast!
+ we can use indexes instead of addresses

Cons:
- need to reason about overflow!

Note on terminology

• Head/tail - often used in queue implementations, but switches when
we start doing circular buffers.

• Front/end - To avoid confusion, we will use front/end for input/output
queues.

Implementation

end

Implementation

What happens if a thread wants
to add an element?end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:

end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment end

end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment end

reserved!

end

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

reserved!

end

16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

end

16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

done!

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

Two threads cannot reserve the same space!
We’ve seen this before

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

Thread 0:
enq(6);

Thread 1:
enq(7);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

Thread 0:
enq(6);

Thread 1:
enq(7);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end

7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end

6 7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order
threads add their data? No!
Because there are no deqs!

Thread 0:
enq(6);

Thread 1:
enq(7);

end

class InputOutputQueue {
private:

atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

int size() {
return end.load();

}
}

How to protect against overflows?

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

end

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();

data index
T0

data index
T1

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read
data

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read
data

How to implement
a stack?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return ??;

}
}

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return ??;

}
}

How about size?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

how about size?

how do we reset?

how about size?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

how do we reset?
Reset front and end

how about size?

does the list need
to be atomic?

how do we reset?
Reset front and end

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

See you on Monday!

• Get HW 2 submitted!

