CSE113: Parallel Programming March 9, 2022

- Topics:
 - Continue on GPU programming

Instruction Buffer						
		Warp So	heduler			
Dispatch Unit			Dispatch Unit			
Register File (16,384 x 32-bit)						
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	

Announcements

- HW 5 is out
 - Please get started on it ASAP so that we can sort out technical issues sooner rather than later
 - Designed to be lighter than the previous homeworks.
 - Due by midnight the day before the final (March 16)
- HW 3 grades are released
 - Let us know ASAP if there are issues

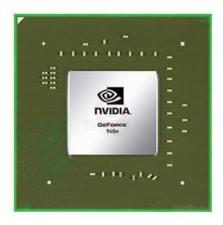
Announcements

- Final is on March 17
 - I will release it by 8 AM, and you will have until midnight to turn it in
 - If you want to allocate time for it, our official final time is 4 PM to 7 PM
 - Same rules at the midterm:
 - Do not discuss with class mates
 - Do not google specific answers or ask questions on forums
 - You can use your notes, the slides, and the internet to google for general concepts.
 - worth 30% of your grade.

Announcements

- SETs are out!
 - Please fill them out; I know they are a pain and we're all busy
 - But it has an outsized effect on classes like this one
 - New class
 - New content
 - New professor
 - I would love to teach this in the future

Quizzes


- We will cancel quizzes for the rest of the quarter;
 - It's a busy time for everyone and I want to make sure we can support you in HW 5 as much as possible.
 - If you think of good quiz questions let me know!

Review

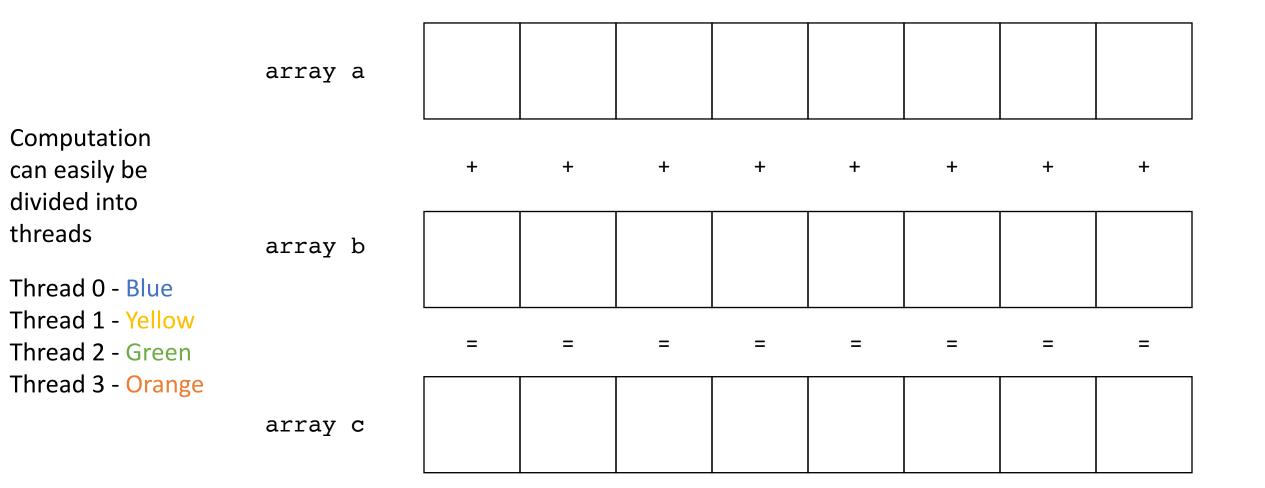
Setting up our GPU competition

Programming a GPU

The GPU in my PhD laptop

Nvidia 940m 1.8 Billion transistors 33 TDP Est. \$130 Fight!

The CPU in my professor workstation


Intel i7-9700K 2.16 Billion transistors 95 TDP Est. \$316

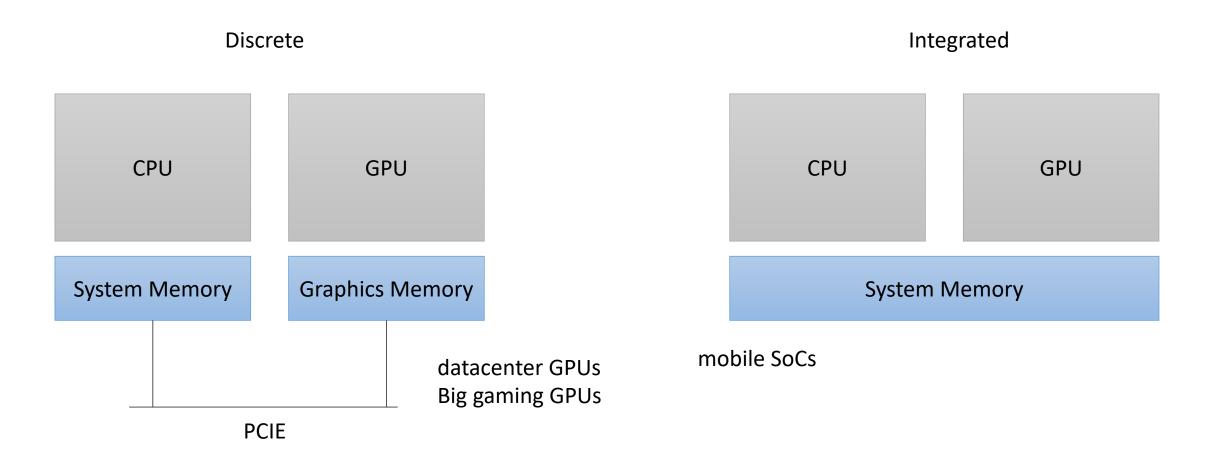
https://www.techpowerup.com/gpu-specs/geforce-940m.c2648 https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Programming a GPU

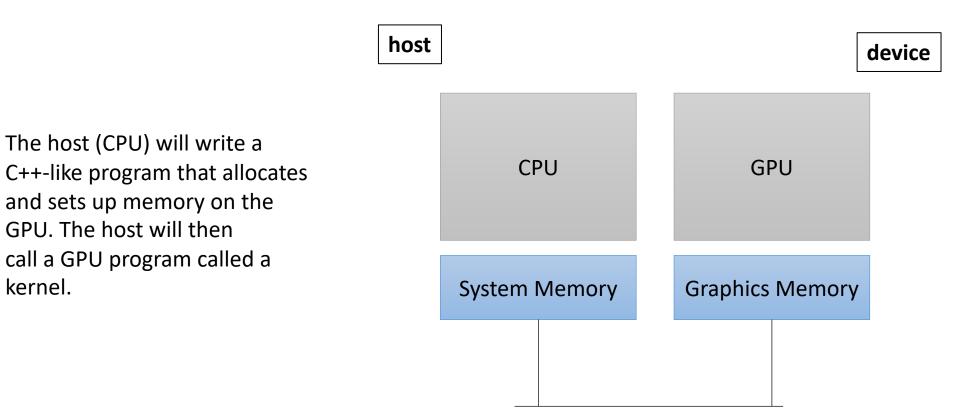
• The problem: Vector addition

Embarrassingly parallel

Programming a GPU


- The problem: Vector addition
- Who can do it faster?

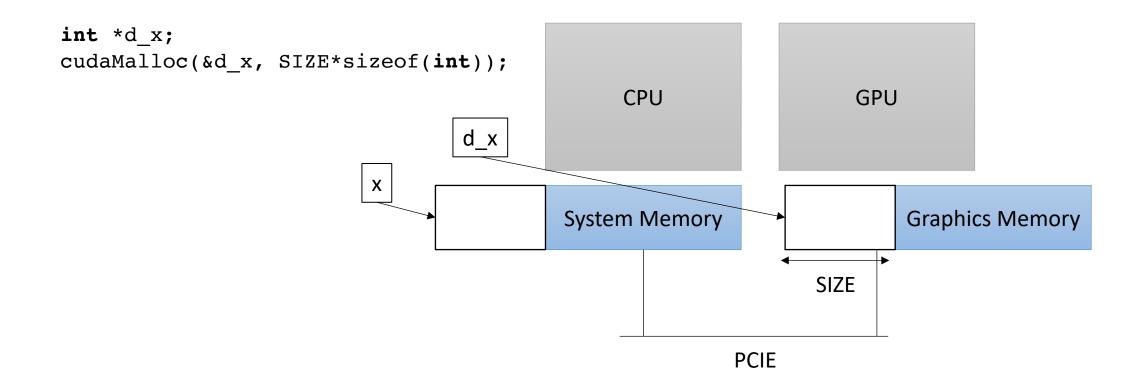
CPU Code


• CPU code

GPU Set up

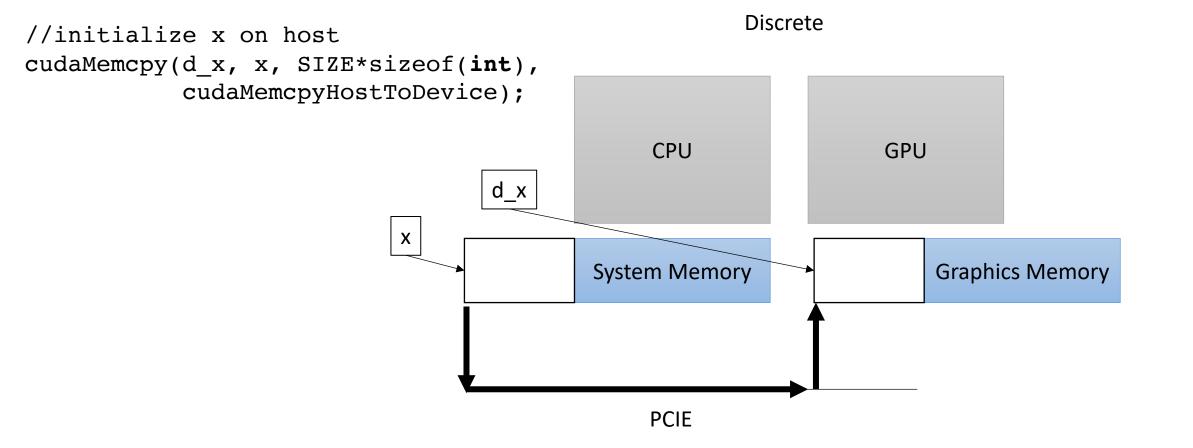
• GPUs come in two flavors

• Our heterogeneous, parallel, programming model


• Our heterogeneous, parallel, programming model

How do we allocate CPU memory on the host?

We need to allocate GPU memory on the host


• Our heterogeneous, parallel, programming model

• Our heterogeneous, parallel, programming model

If we can't access d_x on the CPU, how do we initialize the memory?

GPU has no access to input devices e.g. disk

The GPU Program

- Write a special function in your C++ code.
 - Called a Kernel
 - Use the new keyword ___global___
 - Keywords in
 - OpenCL __kernel
 - Metal kernel
- Write it how you'd write any other function

The GPU Program

```
__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    for (int i = 0; i < size; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

What happens when we run it?

The GPU Program

It didn't do so well...

- Lets look at some GPU documentation.
- The Maxwell whitepaper shows a diagram of one of the GPU cores

Called a streaming multiprocessor

	Instruction Buffer					
		Warp So	heduler			
Dispatch Unit			Dispatch Unit			
	Register File (16,384 x 32-bit)					
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

Called a streaming multiprocessor

woah, 32 cores!

We should parallelize our application!

	Instruction Buffer					
		Warp So	heduler			
Dispatch Unit			Dispatch Unit			
	Register File (16,384 x 32-bit)					
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    for (int i = 0; i < size; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    for (int i = 0; i < size; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

number of threads to launch the program with

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    int chunk_size = size/blockDim.x;
    int start = chunk_size * threadIdx.x;
    int end = start + end;
    for (int i = start; i < end; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

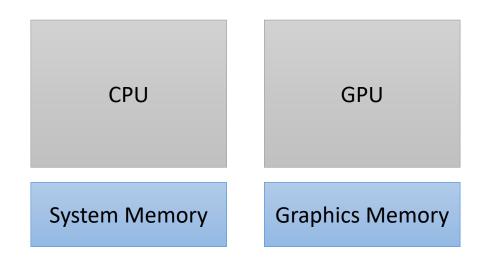
number of threads

```
vector_add<<<1,32>>>(d_a, d_b, d_c, size);
```

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    int chunk_size = size/blockDim.x;
    int start = chunk_size * threadIdx.x;
    int end = start + end;
    for (int i = start; i < end; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

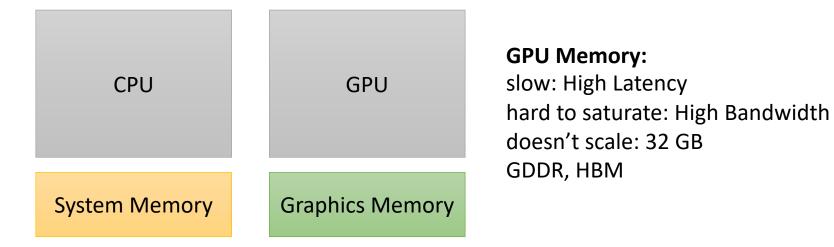
vector_add<<<1,32>>>(d_a, d_b, d_c, size);


number of threads thread id

Lets try it! What do we think?

Getting better but we have a long ways to go!

GPU Memory



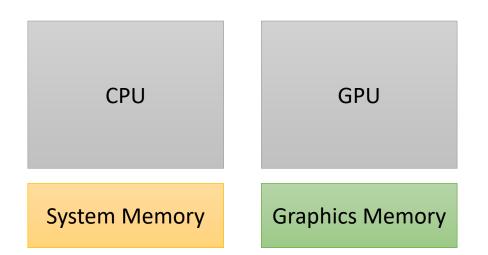
GPU Memory

CPU Memory:

Fast: Low Latency Easily saturated: Low Bandwidth Scales well: up to 1 TB DDR

2-lane straight highway driven on by sports cars

Different technologies


16-lane highway on a windy road driven by semi trucks

GPU Memory

bandwidth: ~**700 GB/s** for GPU ~**50 GB/s** for CPUs

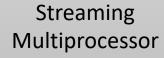
memory Latency:~600 cycles for GPU memory~200 cycles for CPU memory

Cache Latency: ~**28** cycles for L1 hit for GPU ~**4** cycles for L1 hit on CPUs

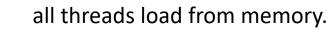


Warps

A warp is a group of 32 threads that execute in parallel on a streaming multiprocessor

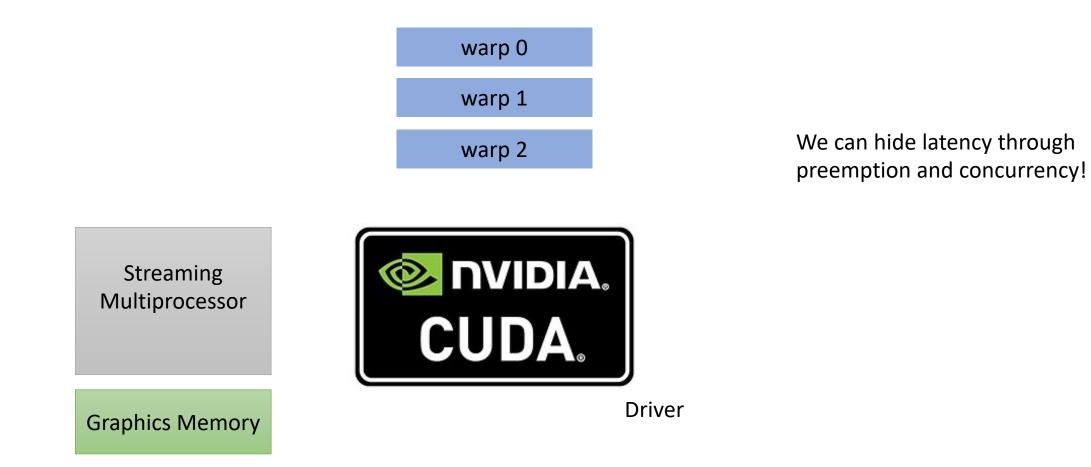

	Instruction Buffer					
		Warp So	heduler			
Dispatch Unit			Dispatch Unit			
	Register File (16,384 x 32-bit)					
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	
Core	Core	Core	Core	LD/ST	SFU	

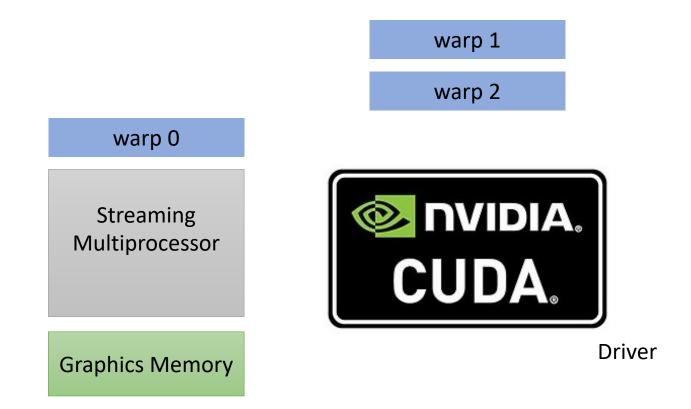
Preemption and concurrency?

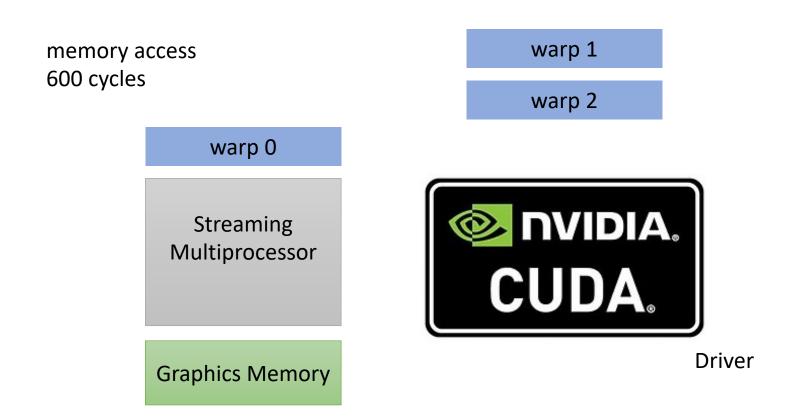


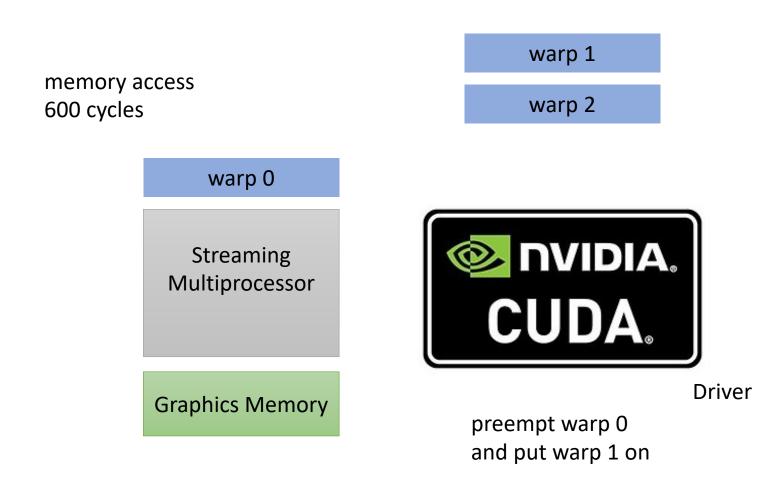
all threads load from memory.

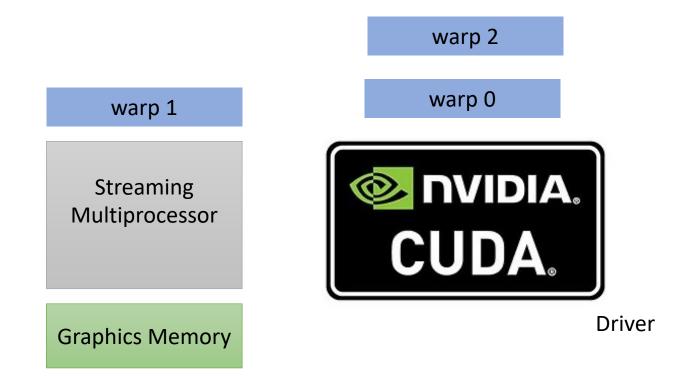
Graphics Memory

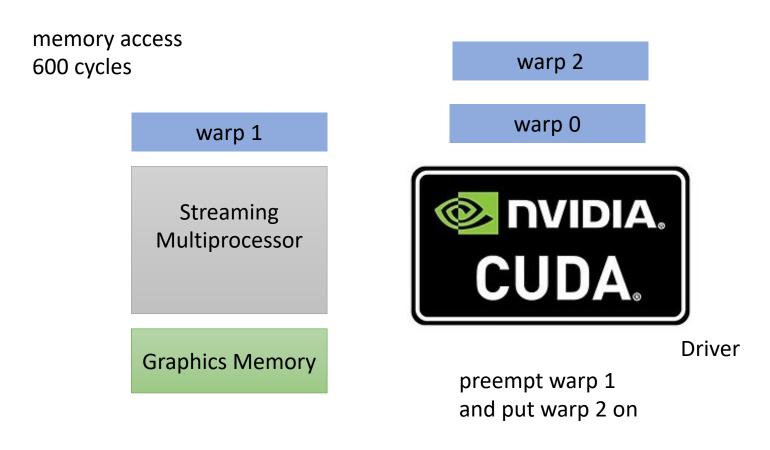


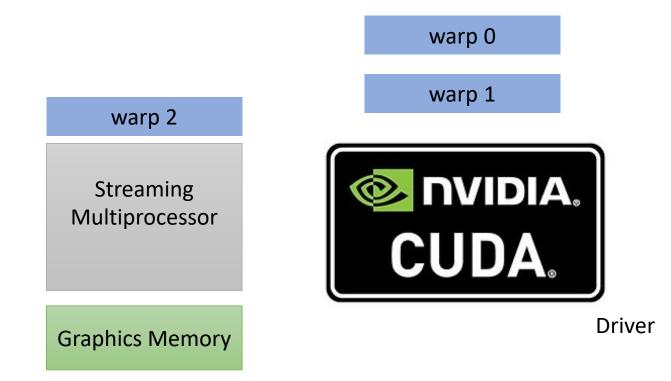

600 cycles!


Streaming Multiprocessor

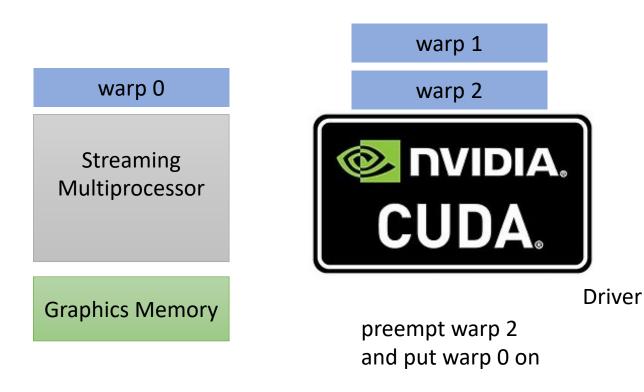

warp 0

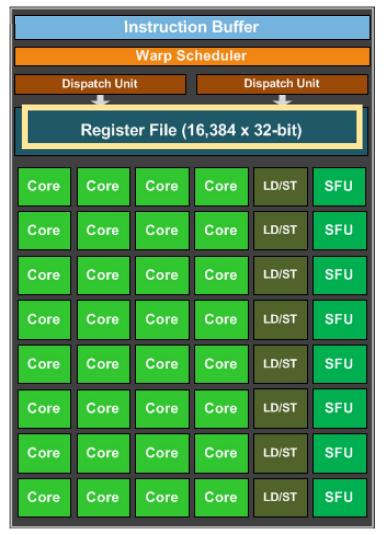

Graphics Memory





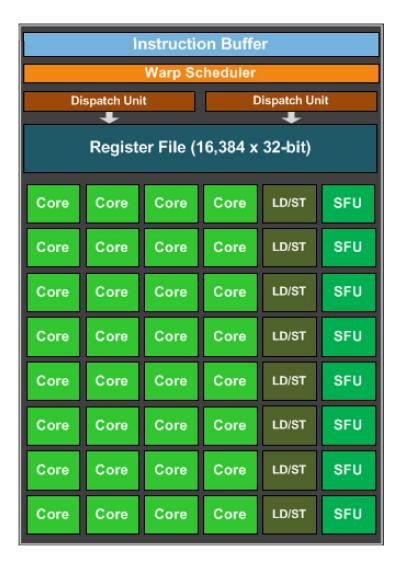






Hey, my memory has arrived!

But wait, I thought preemption was expensive?



But wait, I thought preemption was expensive?

Registers all stay on chip

Instruction Buffer									
Warp Scheduler									
Dispatch Unit			Dispatch Unit						
Register File (16,384 x 32-bit)									
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				

But wait, I thought preemption was expensive? dedicated scheduler logic

But wait, I thought preemption was expensive?

bound on number of warps: 32

Go back to our program

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    int chunk_size = size/blockDim.x;
    int start = chunk_size * threadIdx.x;
    int end = start + end;
    for (int i = start; i < end; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

Lets launch with 32 warps

```
vector_add<<<1,32>>>(d_a, d_b, d_c, size);
```

Go back to our program

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    int chunk_size = size/blockDim.x;
    int start = chunk_size * threadIdx.x;
    int end = start + end;
    for (int i = start; i < end; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

Lets launch with 32 warps

```
vector_add<<<1,1024>>>(d_a, d_b, d_c, size);
```

Concurrent warps

Lets try it! What do we think?

Concurrent warps

Lets try it! What do we think?

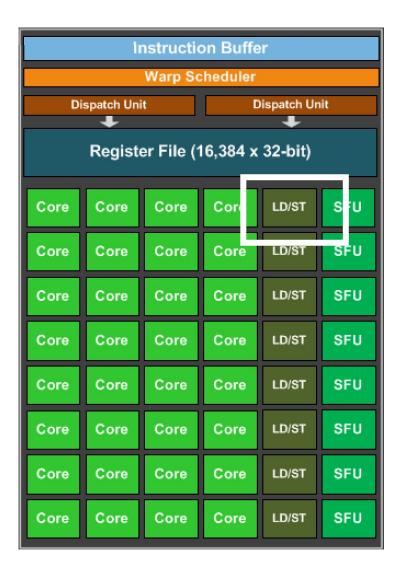
Getting better!

Question: How do CPUs handle latency?

bandwidth: ~**700 GB/s** for GPU ~**50 GB/s** for CPUs

memory Latency: ~**600** cycles for GPU memory ~**200** cycles for CPU memory
 CPU
 GPU

 System Memory
 Graphics Memory


Cache Latency: ~**28** cycles for L1 hit for GPU ~**4** cycles for L1 hit on CPUs

If CPUs can hide latency the same way, then I should be able to oversubscribe the CPU code and see a performance improvement!

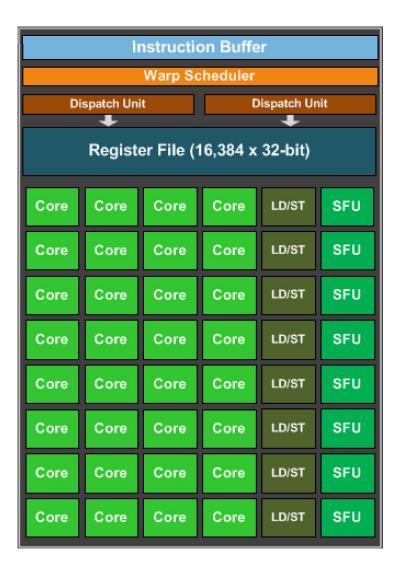
Optimizing memory accesses

Instruction Buffer									
Warp Scheduler									
Dispatch Unit			Dispatch Unit						
Register File (16,384 x 32-bit)									
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				
Core	Core	Core	Core	LD/ST	SFU				

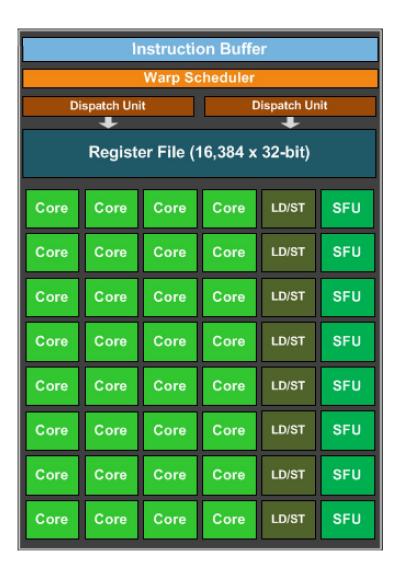
Optimizing memory accesses

this is the load/store unit. The hardware component responsible for issuing loads and stores.

Why doesn't every core have one?

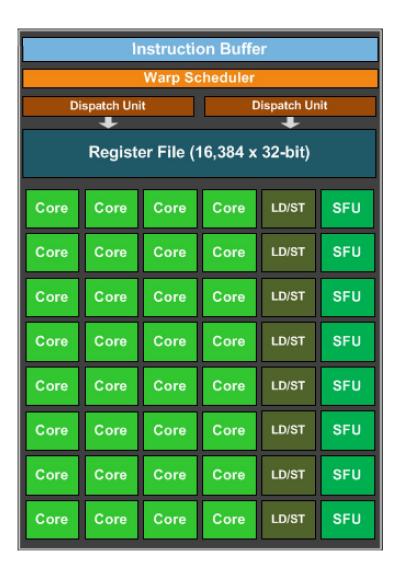

Optimizing memory accesses

This is the instruction cache... Why doesn't every core have a instruction buffer to keep track of its program?


this is the load/store unit. The hardware component responsible for issuing loads and stores.

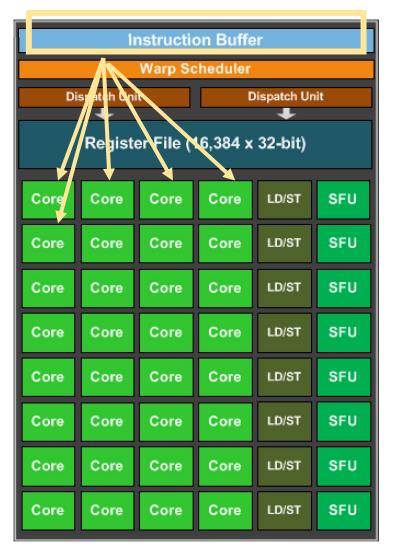
Why doesn't every core have one?

Groups of 32 threads are called a "warp"


They are executed in lock-step, i.e. they all execute the same instruction at the same time

Groups of 32 threads are called a "warp"

They are executed in lock-step, i.e. they all execute the same instruction at the same time


```
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;
```


Groups of 32 threads are called a "warp"

They are executed in lock-step, i.e. they all execute the same instruction at the same time

```
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;
```



Groups of 32 threads are called a "warp"

They are executed in lock-step, i.e. they all execute the same instruction at the same time

instruction is fetched from the buffer and distributed to all the cores.

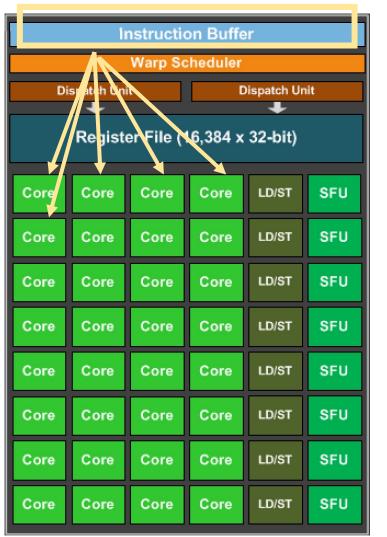
```
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;
```


Groups of 32 threads are called a "warp"

They are executed in lock-step, i.e. they all execute the same instruction at the same time

Cores can a large register file they share expensive HW units (load/store and special functions)

```
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;
```

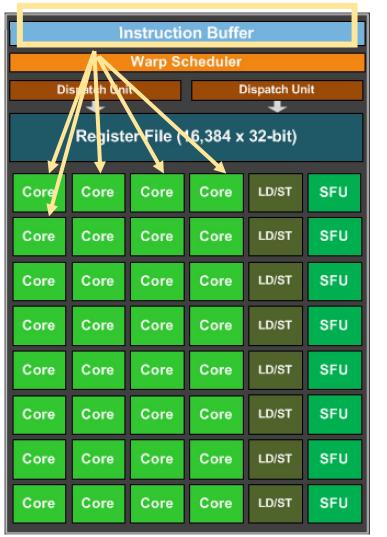


Groups of 32 threads are called a "warp"

They are executed in lock-step, i.e. they all execute the same instruction at the same time

All cores need to wait until all cores finish the first instruction

```
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;
```

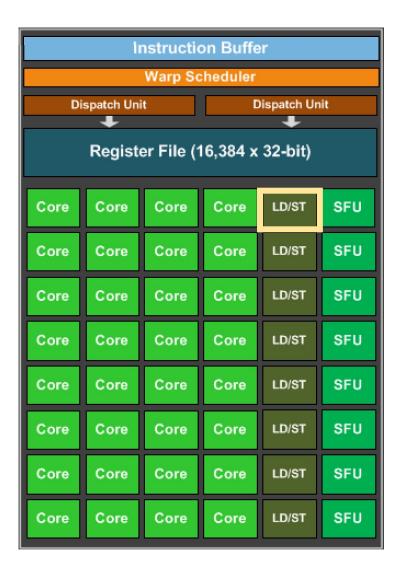


Groups of 32 threads are called a "warp"

They are executed in lock-step, i.e. they all execute the same instruction at the same time

Start the next instruction.

Program: int variable1 = b[0]; int variable2 = c[0]; int variable3 = variable1 + variable2; a[0] = variable3;

Why would we have a programming model like this?


Groups of 32 threads are called a "warp"

They are executed in lock-step, i.e. they all execute the same instruction at the same time

Start the next instruction.

Program: int variable1 = b[0]; int variable2 = c[0]; int variable3 = variable1 + variable2; a[0] = variable3;

Why would we have a programming model like this? More cores (share program counters) Can be efficient to share other hardware resources

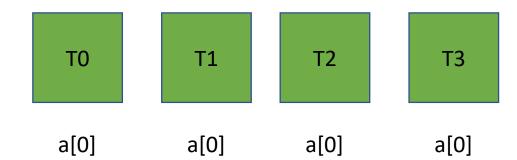
Lets look closer at memory


Program:

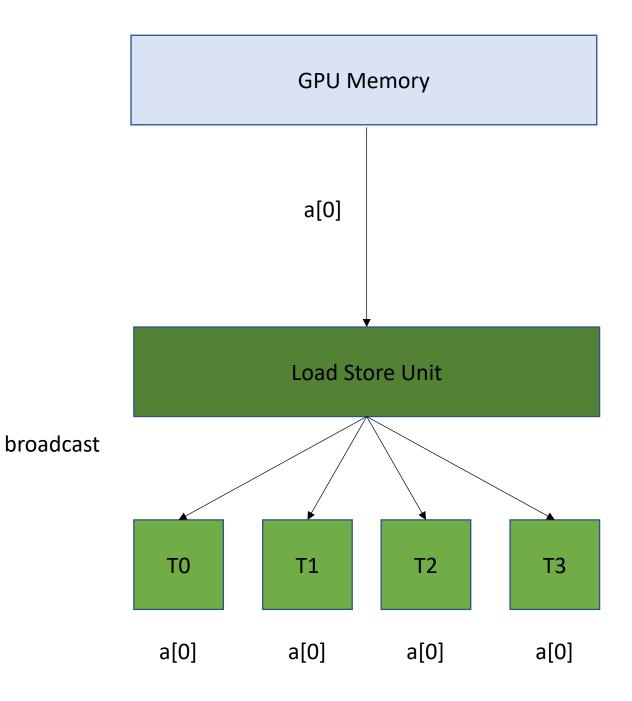
```
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;
```

4 cores are accessing memory. what happens if they access the same value?

GPU Memory


Load Store Unit

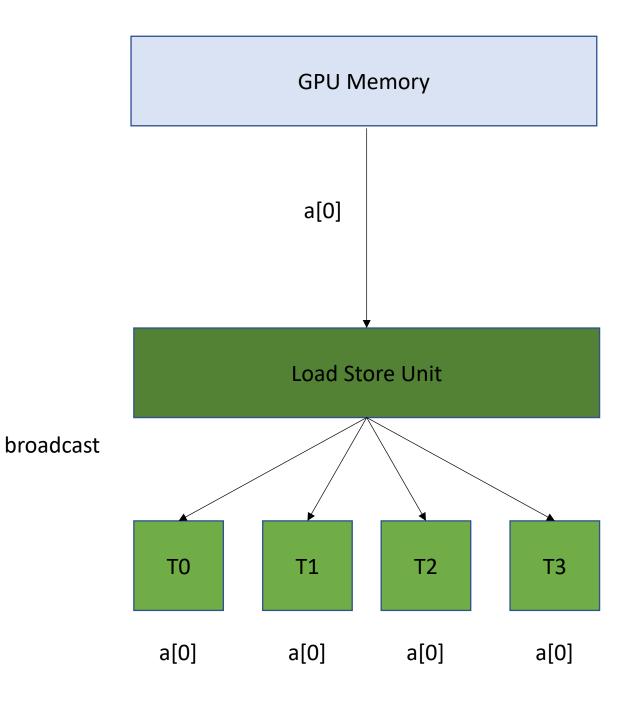
All read the same value


GPU Memory

Load Store Unit

All read the same value

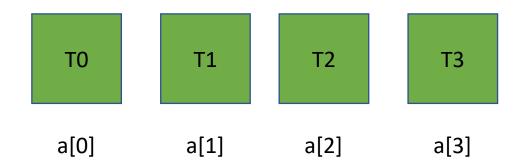
This is efficient: the load store unit can ask for the value and then broadcast it to all cores.



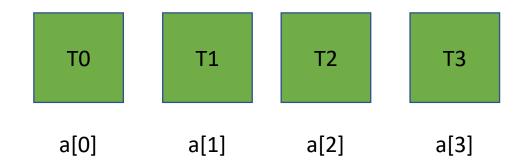
All read the same value

This is efficient: the load store unit can ask for the value and then broadcast it to all cores.

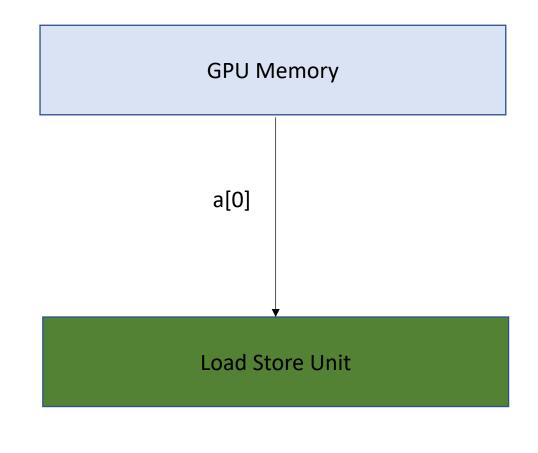
1 request to GPU memory

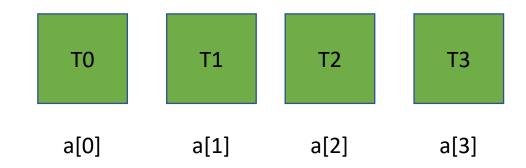

Efficient, but probably not too common.

Read contiguous values

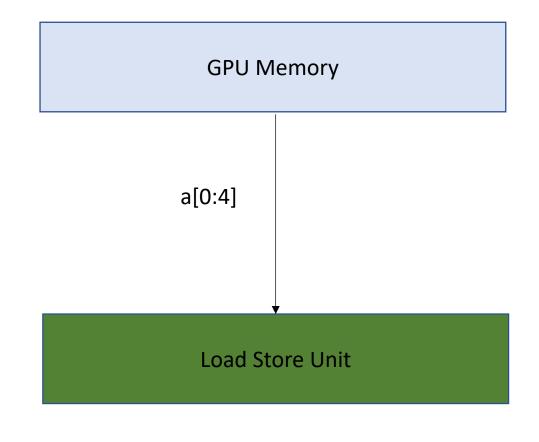

GPU Memory

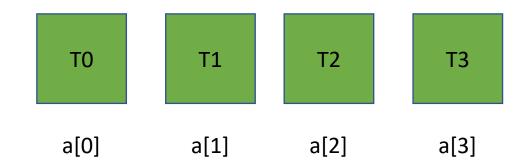
Load Store Unit




Read contiguous values Like the CPU cache, the Load/Store Unit reads in memory in chunks. 16 bytes **GPU Memory**

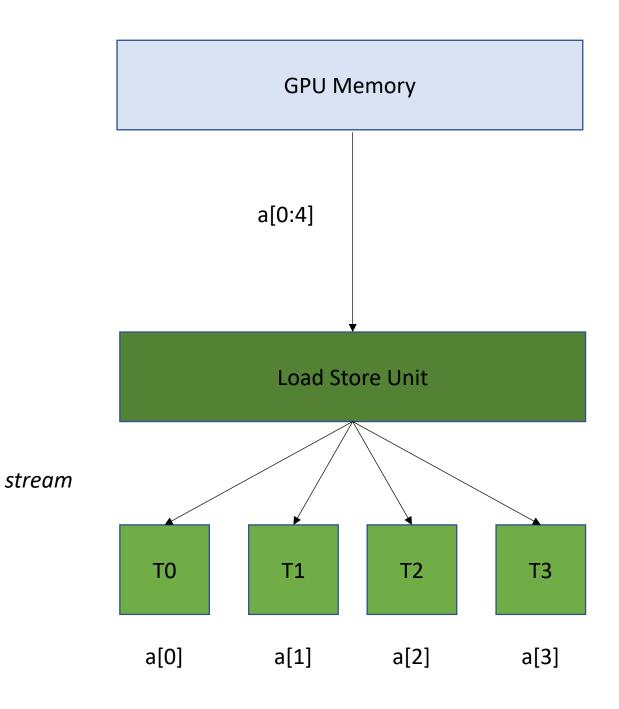
Load Store Unit


Read contiguous values Like the CPU cache, the Load/Store Unit reads in memory in chunks. 16 bytes



Read contiguous values Like the CPU cache, the Load/Store Unit reads in memory in chunks. 16 bytes

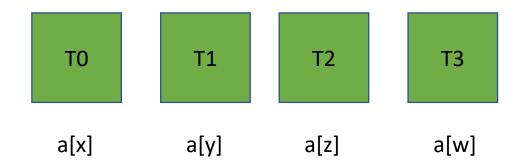
Can easily distribute the values to the threads



Read contiguous values Like the CPU cache, the Load/Store Unit reads in memory in chunks. 16 bytes

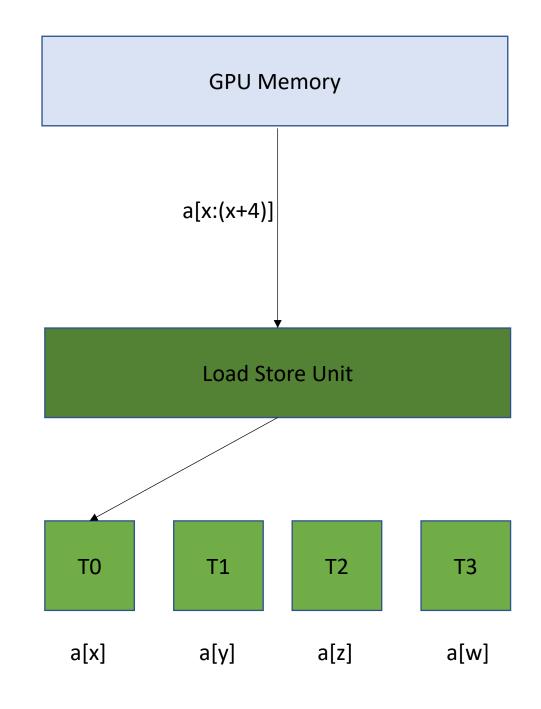
Can easily distribute the values to the threads

1 request to GPU memory

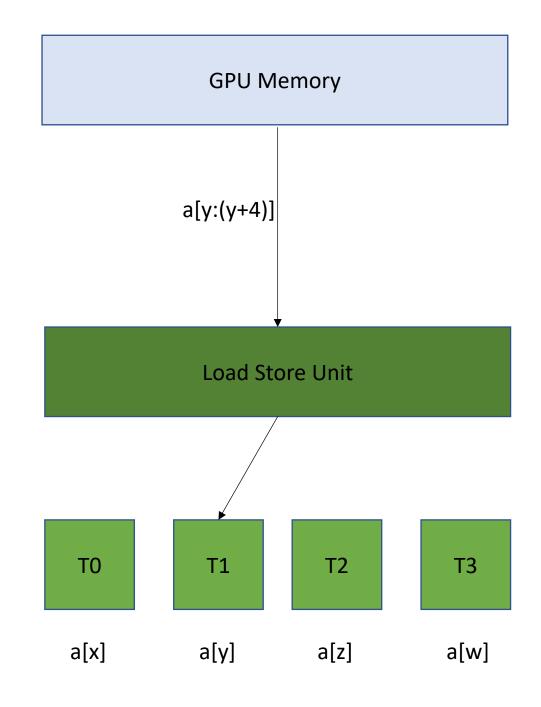

Read non-contiguous values

Not good!

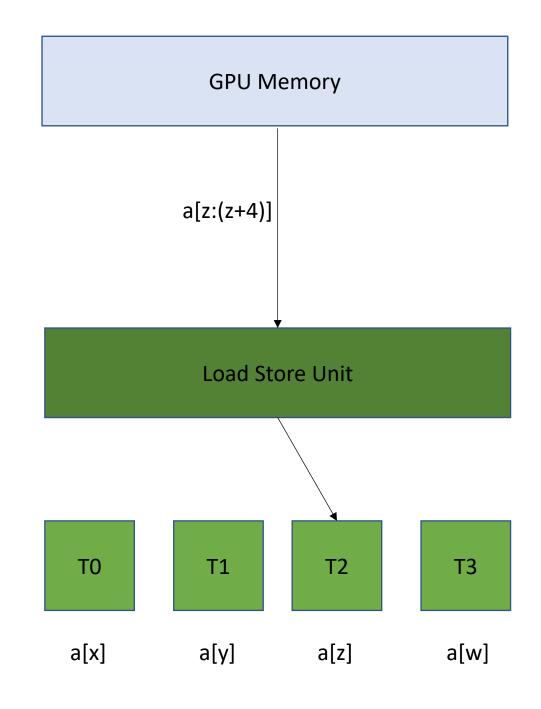
Accesses are Serialized. You need 4 requests to GPU memory


GPU Memory

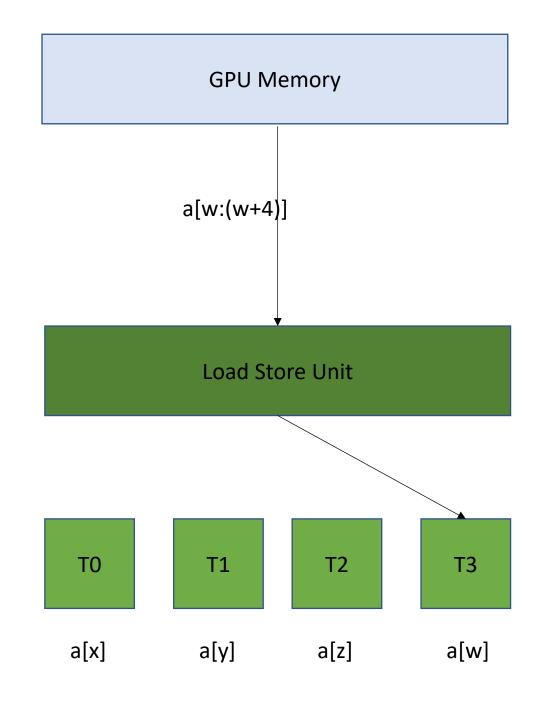
Load Store Unit


Read non-contiguous values

Not good!


Read non-contiguous values

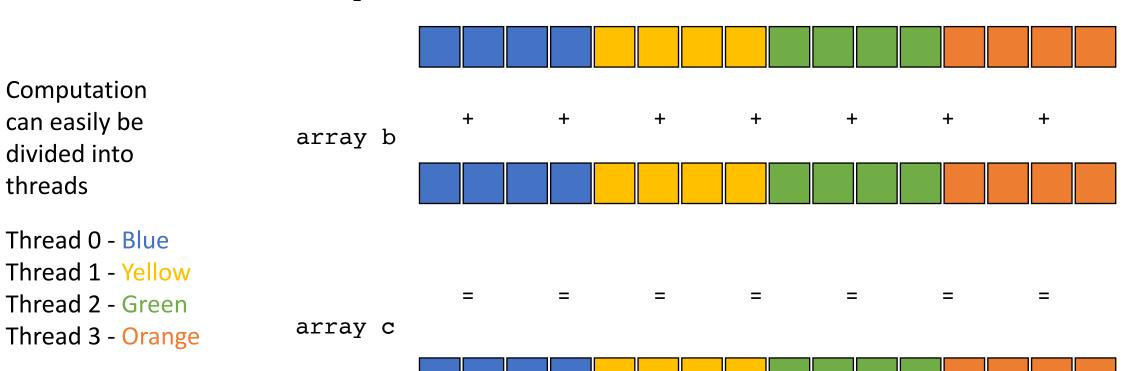
Not good!


Read non-contiguous values

Not good!

Read non-contiguous values

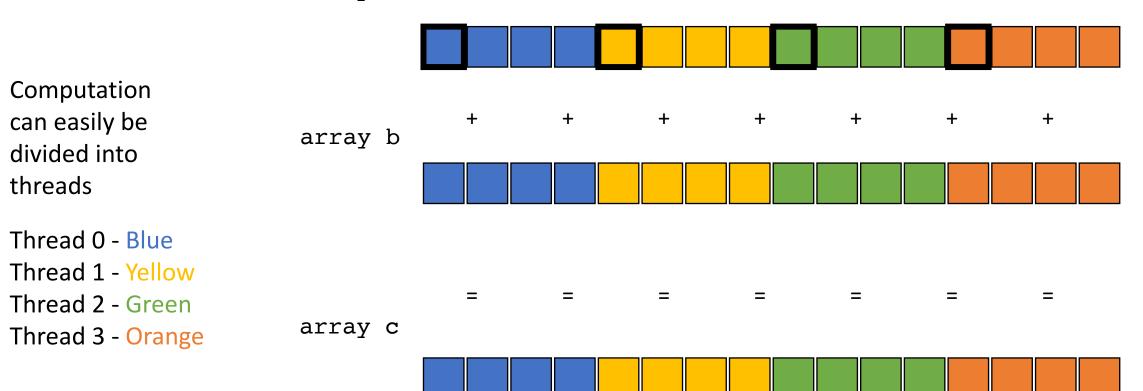
Not good!


Go back to our program

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    int chunk_size = size/blockDim.x;
    int start = chunk_size * threadIdx.x;
    int end = start + end;
    for (int i = start; i < end; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

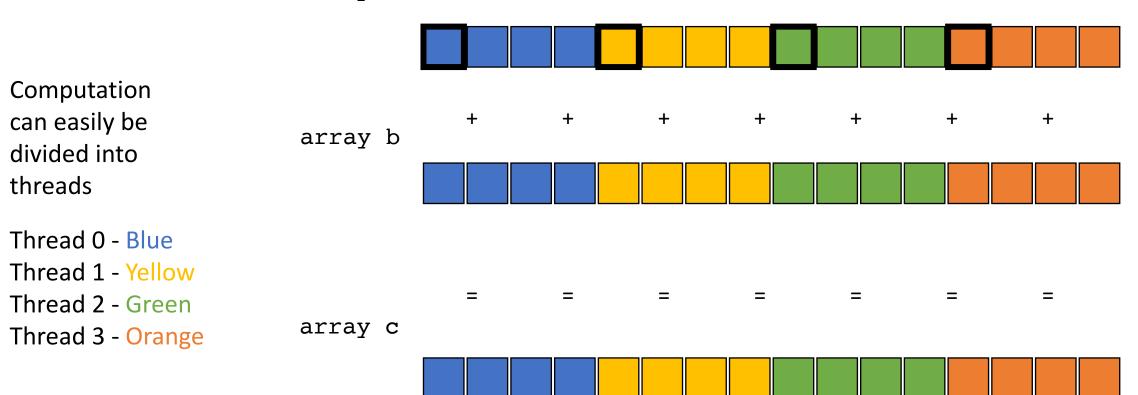
calling the function

```
vector_add<<<1,32>>>(d_a, d_b, d_c, size);
```


Chunked Pattern

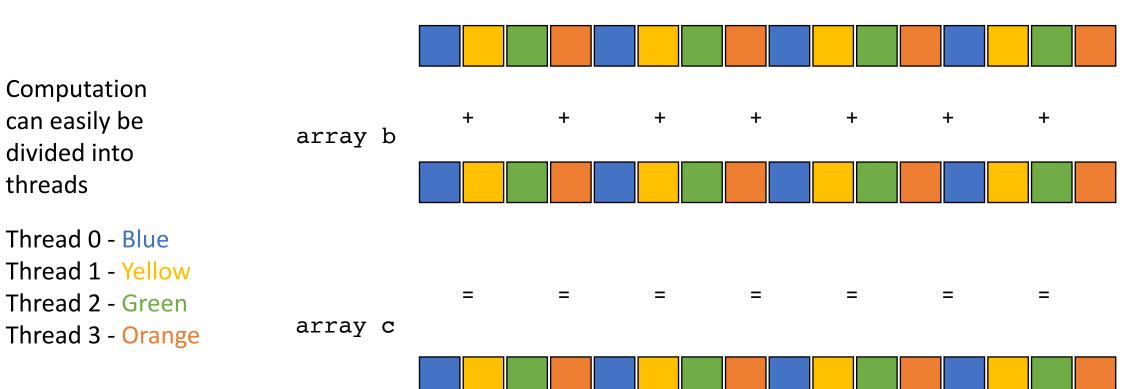
array a

Chunked Pattern


the first element accessed by the 4 threads sharing a load store unit. What sort of access is this?

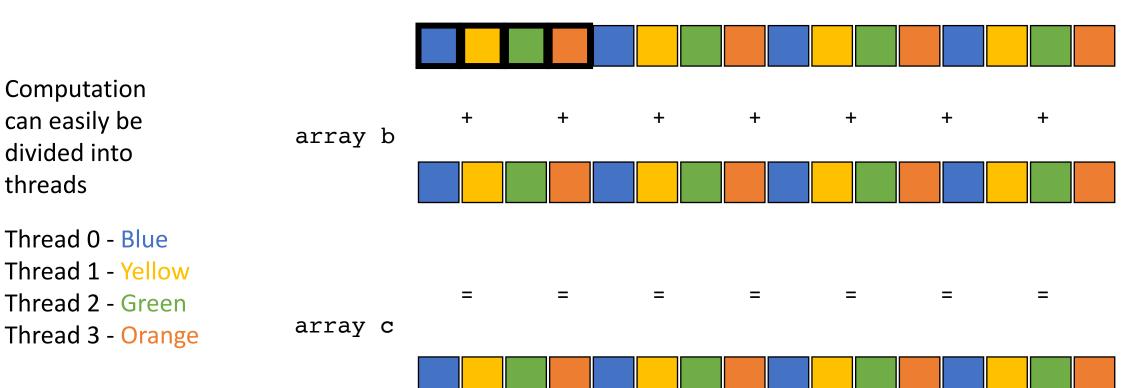
array a

Chunked Pattern


the first element accessed by the 4 threads sharing a load store unit. What sort of access is this?

array a

How can we fix this


Stride Pattern

array a

What sort of pattern is this?

Stride Pattern

array a

Go back to our program

```
__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    int chunk_size = size/blockDim.x;
    int start = chunk_size * threadIdx.x;
    int end = start + end;
    for (int i = start; i < end; i++) {
        d_a[i] = d_b[i] + d_c[i];
    }
}</pre>
```

calling the function

Lets change this to a stride pattern

```
vector_add<<<1,1024>>>(d_a, d_b, d_c, size);
```

Go back to our program

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
   for (int i = threadIdx.x; i < size; i+=blockDim.x) {
      d_a[i] = d_b[i] + d_c[i];
   }
}</pre>
```

calling the function

```
vector_add<<<1,1024>>>(d_a, d_b, d_c, size);
```

Coalesced memory accesses

Lets try it! What do we think?

Coalesced memory accesses

Lets try it! What do we think?

What else can we do?

Multiple streaming multiprocessors

We've been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs big ML GPUs have 32. My GPU has 4

	h	nstructi	on Buffe	er	
		Warp So	cheduler		
Di	spatch Uni	it	C)ispatch Ur	it
	Regist	er File ('	16,384 x	32-bit)	
Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU

Multiple streaming multiprocessors

We've been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs big ML GPUs have 32. My little GPU has 4

	1	nstructi	on Buffe	ər			lr	nstructi	on Buffe	er			1	nstructi	on Buffe)r			1	nstructi	on Buffe	er	
		Warp S	cheduler					Warp So	cheduler					Warp So	cheduler					Warp So	cheduler		
D	ispatch Un	it	l.	Dispatch U	nit	Di	spatch Uni	t	Į.	Dispatch U	nit	D	spatch Un	it	[)ispatch U	nit	Di	spatch Un	it		Dispatch Un	nit
		er File (16,384 x				Registe	er File ('	16,384 x	32-bit)				er File ('	16,384 x					er File (16,384 x		
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	LD/ST	SFU

Multiple streaming multiprocessors

CUDA provides virtual streaming multiprocessors called **blocks**

Very efficient at launching and joining blocks.

No limit on blocks: launch as many as you need to map 1 thread to 1 data element

	1	nstructi	on Buffe	ər				1	nstructi	on Buffe	r	
		Warp S	cheduler						Warp S	cheduler		
C	Sispatch Un	iit		Dispatch U	sit			Dispatch Un	it		Dispatch U	nit
		er File (16,384 x						er File (16,384 x		
Core	Core	Core	Core		SFU		Core	Core	Core	Core		SFU
ore	Core	Core	Core		SFU		Core	Core	Core	Core		SFU
ore	Core	Core	Core	LD/ST	SFU		Core	Core	Core	Core	LD/ST	SFU
ore	Core	Core	Core	LD/ST	SFU	-	Core	Core	Core	Core	LD/ST	SFU
ore	Core	Core	Core	LD/ST	SFU	-	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core Core	Core Core	LD/ST	SFU SFU	-	Core	Core	Core Core	Core Core	LD/ST	SFU
Core	Core	Core					Core		Core	Core	LD/ST	SFU
Core	Core	Core	Core	LD/ST	SFU	J	Core	Core	Core	Core	LD/ST	SFU
Core		nstructi	I on Buffe		SFU		Core		nstructi	on Buffe		SFU
	ال	nstructi Warp S	on Buffe	Pr				1	nstructi Warp Se	on Buffe	٥r	
		nstructi Warp S	on Buffe						nstructi Warp Se	on Buffe		
	lispatch Un	nstructi Warp S-	on Buffe	er Dispatch Ur) Dispatch Un	nstructi Warp Se	on Buffe	or Dispatch Un	
C	lispatch Un	nstructi Warp S-	on Buffe	er Dispatch Ur) Dispatch Un	nstructi Warp Se	on Buffe	or Dispatch Un	
C	ispatch Un ≹ Regist	nstructi Warp S it er File (on Buffe cheduler 16,384 x	9r Dispatch Ur T 32-bit)	nit			lispatch Un ▼ Regist	nstructi Warp Sr nit ter File (on Buffe cheduler 16,384 x	or Dispatch Ur 32-bit)	nit
ore ore	Nispatch Um Regist Core Core	nstructi Warp S iit Core Core Core	on Buffe cheduler 16,384 x Core Core	Dispatch Uf 32-bit) LD/ST LD/ST LD/ST	SFU SFU SFU		Core	lispatch Un Regist Core Core	nstructi Warp Si iit Core Core Core	on Buffe cheduler 16,384 x Core Core Core	Dispatch U 32-bit) LD/ST LD/ST LD/ST	nit SFU SFU SFU
ore ore	Regist Core Core Core Core	nstructi Warp S iit Core Core Core Core	on Buffa cheduler 16,384 x Core Core Core Core	Dispatch Ur 32-bit) LD/ST LD/ST LD/ST LD/ST	SFU SFU SFU SFU		Core Core Core	Regist Core Core Core Core	nstructi Warp Si iit Core Core Core Core	on Buffa cheduler 16,384 x Core Core Core	or 32-bit) LDIST LDIST LDIST LDIST	nit SFU SFU SFU SFU
re re re	Nispatch Uni Regist Core Core Core Core	nstructi Warp S it Core Core Core Core Core	on Buffe cheduler t 16,384 x Core Core Core Core Core	Bispatch U 32-bit) LD/ST LD/ST LD/ST LD/ST LD/ST	SFU SFU SFU SFU SFU		Core Core Core Core	Regist Core Core Core Core Core Core	nstructi Warp S it Core Core Core Core Core	on Buffe cheduler 16,384 x Core Core Core Core Core	ar Jispatch U 32-bit) LD/ST LD/ST LD/ST LD/ST	SFU SFU SFU SFU SFU
re re re re	Regist Core Core Core Core Core Core	Instruction Warp S Inter File (Core Core Core Core Core	on Bufff cheduler t6,384 x Core Core Core Core Core	ISPATCH UI S2-bit) LDIST LDIST LDIST LDIST LDIST	SFU SFU SFU SFU SFU SFU		Core Core Core Core Core	Regist Core Core Core Core Core Core	Instruction Warp Site Inter File (Core Core Core Core Core	on Buffi the duler to the duler	r 32-bit) LD/ST LD/ST LD/ST LD/ST LD/ST	SFU SFU SFU SFU SFU SFU
	Nispatch Uni Regist Core Core Core Core	nstructi Warp S it Core Core Core Core Core	on Buffe cheduler t 16,384 x Core Core Core Core Core	Bispatch U 32-bit) LD/ST LD/ST LD/ST LD/ST LD/ST	SFU SFU SFU SFU SFU		Core Core Core Core	Regist Core Core Core Core Core Core	nstructi Warp S it Core Core Core Core Core	on Buffe cheduler 16,384 x Core Core Core Core Core	ar Jispatch U 32-bit) LD/ST LD/ST LD/ST LD/ST	SFU SFU SFU SFU SFU

Go back to our program

```
__global___ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
   for (int i = threadIdx.x; i < size; i+=blockDim.x) {
      d_a[i] = d_b[i] + d_c[i];
   }
}</pre>
```

calling the function

Launch with many thread blocks

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

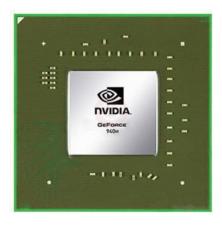
Go back to our program

```
__global___void vector_add(int * d_a, int * d_b, int * d_c, int size) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    d_a[i] = d_b[i] + d_c[i];
}
```

calling the function

Need to recalculate some thread ids.

Launch with many thread blocks


vector_add<<<1024,1024>>>(d_a, d_b, d_c, size);

Now we have 1 thread for each element

#define SIZE (1024*1024)

Final Round

The GPU in my PhD laptop

Nvidia 940m 1.8 Billion transistors 75 TDP Est. \$130 Fight!

The CPU in my professor workstation

Intel i7-9700K 2.16 Billion transistors 95 TDP Est. \$316

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648 https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

See you on Wednesday!

- We will continue optimizing the GPU program!
- Get started on HW 5!