
CSE113: Parallel Programming
March 7, 2022

• Topics:
• Finish discussing HW 5

• GPU programming

Announcements

• HW 4 was due on Friday

• HW 5 was released on Friday (technically Saturday AM... apologies!)
• Please get started on it ASAP so that we can sort out technical issues sooner

rather than later
• Designed to be lighter than the previous homeworks.
• Due by midnight the day before the final (March 16)

• HW 3 grades are released
• Let us know ASAP if there are issues
• If you are missing grades that should be there, definitely let us know!

Announcements

• Final is on March 17
• I will release it by 8 AM, and you will have unMl midnight to turn it in
• If you want to allocate Mme for it, our official final Mme is 4 PM to 7 PM
• Same rules at the midterm:

• Do not discuss with class mates
• Do not google specific answers or ask ques7ons on forums
• You can use your notes, the slides, and the internet to google for general concepts.

• worth 30% of your grade.

Announcements

• SETs are out!
• Please fill them out; I know they are a pain and we’re all busy
• But it has an outsized effect on classes like this one

• New class
• New content
• New professor

• I would love to help

Quizes

• We will cancel quizzes for the rest of the quarter;
• It’s a busy time for everyone and I want to make sure we can support you in

HW 5 as much as possible.

• If you think of good quiz questions let me know!

Review

Homework 5

Homework 5 - requirements

• The browser
• Google Chrome Canary
• (if you have linux, Google Chrome Dev should work)

• Why do we need the Canary?
• WebGPU is new and support is inconsistent on main (Although it is officially

supported)

• Perhaps more interesting is the shared array buffer.

• Make sure you navigate to http://localhost:8000

Homework 5 - requirements

Node.js and local webservers

• Permission issues
• you can try running with sudo (generally considered bad)
• a stack overflow thread with installation options

Javascript

• logging
• variables
• objects
• shared array buffers

What does the solution look like?

• Demo

New material

Web Workers demo

Overview: Web Workers

• Create a new worker with a new .js file (this is done for you)
• Nothing happens on creation

• File contains an onmessage event function

• Main file calls postMessage to start the thread along with an object
argument.

• Worker sends a message back to the main file (postMessage), it can
catch the data with an onmessage event.

Overview: Web Workers

main.js webWorkger.js
postMessage(obj)

onmessage event func-on
can use data in obj.

postMessage(obj2)

onmessage event
function can use
data in obj2.

Your Homework (part 1 and part 2)

• part 1 you only modify the Web Worker.
• You are given code to do all of the Web Worker interface (sending message,

posting messages, etc).
• You just need to update the particles every timestep

• part 2 you need to modify the Web Worker for it to be multithreaded
• Most of your web worker from part 1 will apply.
• You will need extra arguments
• You will need to modify main.js to launch multiple web workers and figure out

how to make sure they are all finished before drawing and calling the next
iteration of updates.

Your Homework (part 3)

• part 3
• You will only modify the GPU kernel code.
• WebGPU simply has too much boiler plate.
• We will discuss CUDA mappings to WebGPU on Wednesday

On to the GPU part of the lecture!

Programming a GPU

Nvidia 940m
1.8 Billion transistors
33 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Programming a GPU

• The problem: Vector addiUon

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Programming a GPU

• The problem: Vector addiUon

• Who can do it faster?

Lets set up the CPU

• CPU code

Now for the GPU

• Its going to take a bit of work....

GPU set up

• We need to allocate and initialize memory

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

Pros and cons of each?

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

Pros and cons of each?
* Different types of memory for discrete
* Swappable for discrete
* More energy efficient for integrated
* Better memory utilization for integrated
* More efficient communication between CPU and GPU

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most still require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most s^ll require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most still require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated

In many cases, CPU-GPU communication is not fully supported
coherence, fences, and RMWs might now be supported.

GPU set up
• Our heterogeneous, parallel, programming model

CPU GPU

System Memory Graphics Memory

PCIE

host device

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

The host (CPU) will write a
C++-like program that allocates
and sets up memory on the
GPU. The host will then
call a GPU program called a
kernel.

host device

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate memory on a CPU?

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

x

SIZE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

d_x is a pointer, in the CPU program,
that points to memory on the GPU.

We can pass the pointer around, but
the CPU cannot access the data
i.e. d_x[0] gives an error!

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

• Our heterogeneous, parallel, programming model

If we can’t access d_x on the
CPU, how do we ini^alize the
memory?

GPU has no access to input
devices e.g. disk

The GPU Program

• Write a special function in your C++ code.
• Called a Kernel
• Use the new keyword __global__
• Keywords in

• OpenCL __kernel
• Metal kernel

• Write it how you’d write any other function

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

What in the world?
special new CUDA syntax. We will talk more soon

The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the func^on

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Pass in pointers to memory on the device

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

Remember, GPU needs to access
its own memory

• Our heterogeneous, parallel, programming model

The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Constants can be passed in regularly

The GPU Program

Are we ready to run the program? What are we missing?

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(x, d_x, SIZE*sizeof(int),

cudaMemcpyDeviceToHost);

• Our heterogeneous, parallel, programming model

The GPU Program

Finally, we can run the GPU program!

Lets see what all the hype is about

The GPU Program

😥 It didn’t do so well...

First parallelization attempt

• Lets look at some GPU documentaUon.

• The Maxwell whitepaper shows a diagram of one of the GPU cores

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

woah, 32 cores!

We should parallelize our application!

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

First parallelizaUon aVempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

number of threads to launch the program with

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads
thread id

First parallelization attempt

Lets try it! What do we think?

First parallelization attempt

😀 Getting better but we have a long ways to go!

GPU Memory

CPU GPU

System Memory Graphics Memory

GPU Memory

CPU GPU

System Memory Graphics Memory

CPU Memory:
Fast: Low Latency
Easily saturated: Low Bandwidth
Scales well: up to 1 TB
DDR

GPU Memory:
slow: High Latency
hard to saturate: High Bandwidth
doesn’t scale: 32 GB
GDDR, HBM

Different technologies2-lane straight highway
driven on by sports cars

16-lane highway on a windy
road driven by semi trucks

GPU Memory

CPU GPU

System Memory Graphics Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Preemption and concurrency?

GPU

Graphics Memory

warp 0

Preemption and concurrency?

GPU

Graphics Memory

warp 0 all threads load from memory.

Preemption and concurrency?

GPU

Graphics Memory

warp 0 all threads load from memory.

600 cycles!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemp^on and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

PreempUon and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

memory access
600 cycles

PreempUon and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 0
and put warp 1 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

PreempUon and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 1
and put warp 2 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

PreempUon and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 2
and put warp 0 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2

We can hide latency through
preemption and concurrency!

Hey, my memory has arrived!

preempt warp 2
and put warp 0 on

Preemption and concurrency?
But wait, I thought preemption was expensive?

Preemption and concurrency?
But wait, I thought preemption was expensive?

Registers all stay on chip

Preemption and concurrency?
But wait, I thought preemp^on was expensive?

dedicated scheduler logic

Preemption and concurrency?
But wait, I thought preemption was expensive?

bound on number of warps: 32

Go back to our program

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Go back to our program

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Concurrent warps

Lets try it! What do we think?

Concurrent warps

Lets try it! What do we think?

😀
Getting better!

See you on Wednesday!

• We will continue optimizing the GPU program!

• Get started on HW 5!

