
CSE113: Parallel Programming
March 4, 2022

• Topics: 
• Discuss HW 5

• GPU programming



Announcements 

• HW 4 is due today!
• Sanya has office hours
• Piazza will be monitored un?l 5 pm

• HW 5 is released today by midnight
• Due the day before the final

• HW 3 grades are coming either by midnight tonight or by Monday
• Wrapping a few things up



Today’s Quiz

• We will cancel quizzes for the rest of the quarter;
• It’s a busy time for everyone and I want to make sure we can support you in

HW 5 as much as possible.



Previous quiz



Review



Livelock vs. Starva>on



m:0
0:next_i:0.0
1:next_i:1.0

label:0

m:1
0:next_i:0.1
1:next_i:1.0

Thread 0

label:2

Thread 1

m:1
0:next_i:0.0
1:next_i:1.1

label:1

T1
label:3

m:0
0:next_i:0.0
1:next_i:END

m:1
0:next_i:0.1
1:next_i:END

T0
label:4

m:0
0:next_i:END
1:next_i:END

label:6
m:0
0:next_i:END
1:next_i:1.0

label:7
m:1
0:next_i:END
1:next_i:1.1

T0 T1

T1

T0

label:5

T0

T1

Is this program 
guaranteed to 
terminate?
What could go 
wrong?

Thread 0:
0.0: while(CAS(&m,0,1) == false); //lock

// critical section
0.1: m.store(0); //unlock

Thread 1:
1.0: while(CAS(&m,0,1) == false); //lock

// critical section
1.1: m.store(0); //unlock

Forever?
0 → 1 → 1 → 1 → 1 → 1 → 1 → 1 ....
0 → 2 → 2 → 2 → 2 → 2 → 2 → 2 ....



Thread 0:
0.0: flag.store(1);

Thread 1:
1.0: while(flag.load() == 0); 

flag:0
0:next_i:0.0
1:next_i:1.0

label:0

Thread 0

Thread 1

flag:1
0:next_i:END
1:next_i:1.0

Thread 1

flag:1
0:next_i:END
1:next_i:END

Forever?
0 →0 →0 →0 →0 →0 →0 →0....

label:1 label:2



A power-saving scheduler

Core 0 Core 1 Core 2

t0t1t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥

😴

preempted



A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥

😴

preempted



A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥

😴



A different type of non-termina>on

Hallway problem

🚶



A different type of non-termina>on

Hallway problem

🚶



A different type of non-termination

Hallway problem

🚶



A different type of non-termina>on

Hallway problem

🚶



A different type of non-termina>on

Hallway problem

🚶



A different type of non-termina>on

Hallway problem

🚶

Can they dance around each other forever?



Thread 0:
... do {
0.0   x.store(0);
0.1 } while (x.load() != 0)

Thread 1:
... do {
1.0   x.store(1);
1.1 } while (x.load() != 1)

Each thread stores their thread id,
and then loads the thread id. It loops while
it doesn’t see its id

Each thread gets a chance to execute, but they
get in each others way.

This is called a livelock



Thread 0:
... do {
0.0   x.store(0);
0.1 } while (x.load() != 0)

Thread 1:
... do {
1.0   x.store(1);
1.1 } while (x.load() != 1)

x:0
0:next_i:0.0
1:next_i:1.0

T0

x:0
0:next_i:0.1
1:next_i:1.0

x:1
0:next_i:0.1
1:next_i:1.1

T1

x:1
0:next_i:0.0
1:next_i:1.1

T0

x:0
0:next_i:0.1
1:next_i:1.1

T0
T1

par+al LTS
T0

T1

T1

T1



Livelock

• All threads are geAng a turn, but they are constantly geAng in each 
others way

• Requires a different type of fairness
• Strong fairness
• All threads get a turn, and for a variable amount of ?me
• Tends to work on CPU threads due to natural variance of processors and 

preemp?on
• Can actually hang on GPUs - much more regular scheduler



GPU history

• Very intertwined with video games and graphics, even if they aren’t on the 
front page of Nvidia anymore!

• Early designs were very specialized. 
• Next came coarse-grained APIs.
• Then came programable shaders
• Then came general programming languages for one vendor (CUDA)
• Then came general programming languages for many vendors (OpenCL, Vulkan)

• Used to ship in video game cartridges

• They are now in nearly every single mainstream device



GPU Shortages?

• Cryptocurrency:
• 2018 reported tripling of GPU prices and shortages due to increase demand 

from miners.

• S?ll happening will lots of market fluctua?ons and supply chain issues

• S?ll plenty of GPUs in your phone, laptop, etc. J



Teaching GPU programming

• This is difficult!

• Nvidia GPUs have the most straighNorward programming model 
(CUDA). They also have great PR.

• It is extremely difficult to get a class of 60 students access to Nvidia 
GPUs these days.
• AWS? Expensive and oTen oversubscribed w.r.t. GPUs
• Department? ML folks get priority and super compu?ng clusters are painful



Going forward

• The GPU programming lectures will use CUDA
• It is widely used
• The programming model is straighWorward

• Homework will use WebGPU, because it is widely supported
• There are more non-Nvidia GPUs in this room than Nvidia GPUs
• There are more non-Nvidia GPUs in the world than Nvidia GPUs



Going forward

• The homework uses Javascript as its ”CPU” language, and webGPU as 
its ”GPU” language.
• We should be able to adopt to new language! 

• We have provided generous skeletons for the homework. We can go 
over some javascript, but it is a high-level language and should not be 
hard to figure out what you need to do.

• The WebGPU por]on is straight forward and I will provide a mapping
directly from what we talked about to what you need.



Homework 5  - first look

• It is the first ]me offering this homework, so feedback is very 
welcome and we will be generous with support.

• Thanks to Mingun Cho who basically did all the work seAng up the 
assignment!



Homework 5 - first look

• Prerequisits
• Google Chrome Canary
• (if you have linux, Google Chrome Dev might work)

• Why do we need the Canary?
• WebGPU is new and support is inconsistent on main (Although it is officially 

supported)

• Perhaps more interes?ng is the shared array buffer.



Homework 5 - first look

• Javascript shared array buffer: 
• How javascript threads can actually share memory
• Similar to memory in C++

Your applica:on will be in a secure context (you are wri:ng and running locally!)



Homework 5 - first look

• You will also need Node.js to run a local web server.



Homework 5 - first look

• Let’s have a look!



Homework 5 - first look

• Your assignment:
• N-body simula?on

• Each par]cle interacts with every 
other par]cle

Pme = 0 Pme = 1 Pme = 2



Examples

• Gravity:

• Boids:
• h_ps://en.wikipedia.org/wiki/Boids



Your homework

• white board example





Your homework

• Part 1 of your homework will do this on a single javascript thread

• Demo



Your homework

• Looks good, but with more par]cles, things start to go slower...



Your homework

• Looks good, but with more par]cles, things start to go slower...

• Part 2 of the homework is to implement with mul]ple CPU threads 
using javascript webworkers
• Should get around a linear speedup

• Part 3 is to implement with webGPU
• Should get a BIG speedup!

• You need to explore how many par]cles you can simulate while
keeping a 60 FPS framerate.



Let’s look at the code and see some javascript

• look at HTML

• how to print to the console (with interpola]on). 
• Syntax errors

• how to interact with HTML
• overwrite elements 
• modify elements



Shared Array Buffer

• Like Malloc, allocates a ”pointer” to a contagious array of bytes

• Can pass the “pointer” to different threads (webworkers)

• Need to instan]ate a typed array to access the values

• Example



More Javascript

• Objects



Web Workers

• How to do mul]-threading in javascript

• Async
• Concurrent (executes on the same thread)
• Good for I/O and user interac?ons

• Web Workers are guaranteed to execute on mul]ple cores 
• Be_er for compute intensive applica?ons
• Be_er performance



How to use?

• Create a new worker with a file
• Doesn’t do anything yet

• File contains a func]on: “on message”

• Main file calls ”post message” to start the thread along with
arguments

• Worker sends a message back to the main file, it can catch the data



Web Workers

Example with data and arrays



Con>nue with code

• Let’s keep going through the code



Start on GPU lectures



Programming a GPU

Nvidia 940m
1.8 Billion transistors
33 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor 
workstaPon

h"ps://www.techpowerup.com/gpu-specs/geforce-940m.c2648
h"ps://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
h"ps://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!



Programming a GPU

• The problem: Vector addi]on



Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computa(on 
can easily be 
divided into 
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Programming a GPU

• The problem: Vector addi]on

• Who can do it faster?



Lets set up the CPU

• CPU code



Now for the GPU

• Its going to take a bit of work....



GPU set up

• We need to allocate and ini]alize memory



GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs



GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

Pros and cons of each?



GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

Pros and cons of each?
*Different types of memory for discrete
*Swappable for discrete
*More energy efficient for integrated
*Beber memory uPlizaPon for integrated



GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most sPll require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated



GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most sPll require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated



GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most sPll require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated

In many cases, CPU-GPU communicaPon is not fully supported
coherence, fences, and RMWs might now be supported.



GPU set up
• Our heterogeneous, parallel, programming model

CPU GPU

System Memory Graphics Memory

PCIE

host device



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

The host (CPU) will write a 
C++-like program that allocates
and sets up memory on the
GPU. The host will then
call a GPU program called a
kernel.

host device

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate memory on a CPU?

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

x

SIZE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

x

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

int *d_x; 
cudaMalloc(&d_x, SIZE*sizeof(int));

x

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x; 
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x; 
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

d_x is a pointer, in the CPU program, 
that points to memory on  the GPU.

We can pass the pointer around, but
the CPU cannot access the data
i.e. d_x[0] gives an error!

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

If we can’t access d_x on the 
CPU, how do we iniPalize the 
memory?

GPU has no access to input 
devices e.g. disk• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int), 

cudaMemcpyHostToDevice); 

If we can’t access d_x on the 
CPU, how do we iniPalize the 
memory?

GPU has no access to input 
devices e.g. disk• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int), 

cudaMemcpyHostToDevice); 

• Our heterogeneous, parallel, programming model

If we can’t access d_x on the 
CPU, how do we iniPalize the 
memory?

GPU has no access to input 
devices e.g. disk



How does this look in code?



How does this look in code?

Nothing too exciPng yet.



The GPU Program

• Write a special func]on in your C++ code.
• Called a Kernel
• Use the new keyword __global__
• Keywords in

• OpenCL __kernel
• Metal kernel

• Write it how you’d write any other func]on



The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}



The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the funcPon

vector_add<<<1,1>>>(d_a, d_b, d_c, size);



The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the funcPon

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

What in the world?
special new CUDA syntax. We will talk more soon



The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the funcPon

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Pass in pointers to memory on the device



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

Remember, GPU needs to access 
its own memory

• Our heterogeneous, parallel, programming model



The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the funcPon

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Constants can be passed in regularly



The GPU Program

Are we ready to run the program? What are we missing?



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int), 

cudaMemcpyHostToDevice); 

• Our heterogeneous, parallel, programming model



GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(x, d_x, SIZE*sizeof(int), 

cudaMemcpyDeviceToHost); 

• Our heterogeneous, parallel, programming model



The GPU Program

Finally, we can run the GPU program!

Lets see what all the hype is about



The GPU Program

😥 It didn’t do so well...



Next lecture:

• Op]mizing the GPU program!



See you on Monday!

• Homework 4 due on today

• Homework 5 assigned my midnight today


