CSE113: Parallel Programming

March 2, 2022

~ Instruction Buffer

Warp Scheduler

Dispatch Unit Dispatch Unit
L L

¢ TOpiCS: Register File (16,384 x 32-bit)
* Finishing up Forward Progress 1T 1 E=

Core Core Core LDIST

¢ |ntr0 tO GPUS Core | Core @ Core | LDIST

Core | Core | Core LD/ST
e D | SCuss HW 5 Core | Core | Core LDIST
Core | Core | Core LD/ST
Core Core @ Core LD/ST

Core Core Core LD/IST

Announcements

* HW 4 is due on Friday

e ask questions on Piazza
e Office hours:

* Reese has hours today, remotely
* | have hours tomorrow
e Tim and Sanya have their hours

e Grades for midterm are out
* let us know if you have questions/comments by Monday
* I'll release a solution sketch by next Friday

* Expect HW 3 grades by Friday

e HW 5 is released on Friday

Announcements

* Potential independent study on GPUs with Professor Narth
* Contact him if interested!

Today’s Quiz

* Due tomorrow by midnight; please do it!

Previous quiz

Previous quiz

The C++ Parallel and Concurrent schedulers are the same, the only difference is that parallel is
optimized to run on multiple cores, while concurrent is meant to timeshare on a single core.

O True

(O False

Previous quiz

Here are two statements:
(a) The car will never roll down a hill
(b) The car will eventually travel from UCSC to Natural Bridges

These statements are:

(O Both are safety properties
(O Both are liveness properties
(O ais aliveness property and b is a safety property

() ais a safety property and b is a liveness property

Previous quiz

We discussed 4 different schedulers last week: which one is not one of them?

(O non-preemptive scheduler
(O fair scheduler

(O unfair scheduler

(O energy saving scheduler

(O cooperative scheduler

Previous quiz

This is the last lecture of lecture 4: please provide any feedback you might have about the module:
the material, lectures, slides, homework. Please let me know what you liked and what you didn't like
so | can improve the course for future students!

Review

Scheduler specifications

Scheduler specifications

* First, | think there was some confusion:

Scheduler specifications

* First, | think there was some confusion:

* What is a scheduler specification?

* A programming guide should give you a scheduler specification

* As a programmer, you need to make sure that your program is safe to run
under the scheduler

* This is similar to the memory model, however, there are no “fences” in the
scheduler.

* For example mutexes can starve under the system scheduler, then you simply
can’t use mutexes on that system.

e C++ let’s you query the threading library to see what scheduler they support.

We studied 4 schedulers

The fair scheduler

e every thread that has not terminated will “eventually” get a chance to
execute.

e “concurrent forward progress”: defined by C++
not guaranteed, but encouraged (and likely what you will observe)

* “weakly fair scheduler”: defined by classic concurrency textbooks

* The fair scheduler disallows starvation cycles
» waiting will always be finite (but no bounds on time)

Schedulers

A fair scheduler typically requires preemption

Thread 0

Core O

resources

Operating
System

Thread list

Thread 1

Thread 2

Thread 3

Schedulers

A fair scheduler typically requires preemption

Thread 0 has
had enough
time

Thread 0

Core O

resources

Operating
System

Thread list

Thread 1

Thread 2

Thread 3

Schedulers

A fair scheduler typically requires preemption

Who to put
on now?

Thread list

'
: I Thread 1

_____]
Thread 2

Core O
Thread 3
resources _ Thread O
Operating

System

Parallel Forward Progress

* “Any thread that has executed at least 1 instruction, is guaranteed to
continue to be fairly executed”

* Also called:
e “Parallel Forward Progress”: by C++
e “Persistent Thread Model”: by GPU programmers
* “Occupancy Bound Execution Model”: in some of my papers

A power-saving scheduler

Program with 5

threads t4 t3 t2 t1 0

thread pool

Core O Core 1 Core 2

Device with 3 Cores
finished threads

A power-saving scheduler

Program with 5

threads PR

thread pool

t0 t1 t2

Core O Core 1 Core 2

Device with 3 Cores
finished threads

A power-saving scheduler

Program with 5

threads PR

thread pool

t0 t1 t2

Core O Core 1 Core 2

Device with 3 Cores
finished threads

A power-saving scheduler

L

-
Program with 5
threads PR
thread pool
t0 t1 t2
Core O Core 1 Core 2
o ° o

Device with 3 Cores
finished threads

A power-saving scheduler

Program with 5
threads

t4

t3

thread pool

finished threads

Uit
t0 t1
Core O Core 1

o ®

Device with 3 Cores

t2

preempted

Core 2

A power-saving scheduler

Program with 5
threads

t4

t3

thread pool

(o

finished threads

L

t0

Core O Core 1

Device with 3 Cores

t2

preempted

Core 2

5

A power-saving scheduler

L

X
Program with 5
threads PR
thread pool
t0 t2

Core O Core 1 Core 2
2 4
</

o
t1 ®

Device with 3 Cores
finished threads

The HSA scheduler

* The thread with the lowest ID that hasn’t terminated is guaranteed to
eventually be executed. Also known as the energy-saving scheduler

e Called:

* “HSA” - Heterogeneous System Architecture, programming language
proposed by AMD for new systems.

* The HSA language appears to be defunct now, but the scheduler is a good fit
for mobile devices (esp. mobile GPUs).

A power-saving scheduler

Program with 5

threads t4 t3 t2 t1 0

thread pool

Core O Core 1 Core 2

Device with 3 Cores
finished threads

A power-saving scheduler

Program with 5

threads PR

thread pool

t0 t1 t2

Core O Core 1 Core 2

Device with 3 Cores
finished threads

A power-saving scheduler

Program with 5

threads PR

thread pool

t0 t1 t2

Core O Core 1 Core 2

Device with 3 Cores
finished threads

A power-saving scheduler

L

-
Program with 5
threads PR
thread pool
t0 t1 t2
Core O Core 1 Core 2
o ° o

Device with 3 Cores
finished threads

A power-saving scheduler

Program with 5
threads

t4

t3

thread pool

finished threads

Uit
t0 t1
Core O Core 1

o ®

Device with 3 Cores

t2

preempted

Core 2

A power-saving scheduler

Program with 5
threads

t4

t3

thread pool

(o

finished threads

L

t0

Core O Core 1

Device with 3 Cores

t2

preempted

Core 2

5

A power-saving scheduler

L

X
Program with 5
threads PR
thread pool
t0 t2

Core O Core 1 Core 2
2 4
</

o
t1 ®

Device with 3 Cores
finished threads

The unfair scheduler

* Any cycle in the LTS can potentially get stuck

* Think like the energy-saver scheduler without thread ids.

Thread 0:

0.0: while(CAS(&m,0,1)
// critical section
m.store(0); //unlock

0.1:

Thread 1:

1.0: while(CAS(&m,0,1)
// critical section
m.store(0); //unlock

false); //lock false); //lock

1.1:

Is this program
guaranteed to
terminate?
What could go
wrong?

Thread O

label:0

m:0
O:next 1:0.0
l:next i:1.0

Thread 1

m:1
O:next 1:0.1
l:next i:1.0

label:7

label:1 label:6

TO T1

m:1
O:next 1i:END
l:next i:1.1

m:0
O:next 1i:END
l:next i:1.0

T1 label:5

m:0
O:next 1i:END
l:next i:END

Forever?
0212121212111 ...
022—22-22-22->2->2->2...

TO

TO

label:2

label:3 label:4

TO m:1
O:next 1:0.1

l:next i:END

m:0
O:next 1:0.0
l:next i:END

Thread 0:
0.0: flag.store(1l);

Thread 1

label:1
flag:1
O:next 1i:END
l:next i:1.0

label:0
flag:0
O:next 1:0.0
l:next i:1.0

Thread O

Thread 1:
1.0: while(flag.load() ==

)

Forever?
0->0->0-0-0->0-0-0....

label:2
flag:1

O:next 1i:END
l:next i:END

A\ 4

Thread 1

What does this mean?

* Mutex worked under parallel scheduler
* Mutex didn’t work under energy saving scheduler

* Flag passing worked under energy saving scheduler
* Flag passing didn’t work under parallel scheduler

* They are incompatible!

Demo

* What happens when your program hangs?

New example...

A different type of non-termination

Hallway problem

A different type of non-termination

Hallway problem

A different type of non-termination

Hallway problem

A different type of non-termination

Hallway problem

A different type of non-termination

Hallway problem

A different type of non-termination

Hallway problem

Can they dance around each other forever?

Thread 0: Thread 1:

... do { ... do {

0.0 x.store(0); 1.0 X.store(1l);

0.1 } while (x.load() != 0) 1.1 } while (x.load() != 1)

Each thread stores their thread id,
and then loads the thread id. It loops while
it doesn’t see its id

Each thread gets a chance to execute, but they
get in each others way.

This is called a livelock

Thread O: Thread 1:
do { ... do {

0.0 X.store(0); 1.0 X.store(1l);
0.1 } while (x.load() != 0) 1.1 } while (x.load() != 1)
| 0
partial LTS B

x:0
O:next 1:0.0
l:next i:1.0

L
x:1 T
O:next 1:0.0
l:next i:1.1

x:0
O:next 1:0.1
l:next i:1.1

T1

Livelock

* All threads are getting a turn, but they are constantly getting in each
others way

e Requires a different type of fairness
e Strong fairness
e All threads get a turn, and for a variable amount of time

* Tends to work on CPU threads due to natural variance of processors and
preemption
e Can actually hang on GPUs - much more regular scheduler

New material

Schedule

* Introduction to GPUs

* Look briefly at homework
* We will look more on Friday

GPUs: a brief history

* Hard to track everything down
* First chapter of CUDA by Example
* https://www.techspot.com/article/650-history-of-the-gpu/

* Please send me any other references you might find!

The very beginning

* Specialized hardware to accelerate
graphics rendering

* One of the first real-time computers:
Whirlwind 1 at MIT (1951)

* Flight simulator for bombers
» vector graphics

Image from: https://ohiostate.pressbooks.pub/graphicshistory/chapter/2-1-whirlwind-and-sage/

Specialization

* Next 30 years, specialized hardware for specialized software to
display 2D graphics

* Specialized
* Typically ran specific programs
* portability was not a top priority
* Even the idea of portable ISAs were not mainstream

Multi-program devices

e 1977: Television Interface Adapter
* One of the first (and widely produced) portable (i.e. multiple program) GPUs

) i\’
it
L4

a0
E!
b
fal
vl
R

.

I
e~ Mm
v
| © e Q|

from: https://en.wikipedia.org/wiki/Television_Interface_Adaptor

https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/Microsoft_ Windows

O S I ﬂteg ratl O ﬂ https://en.wikipedia.org/wiki/OpenGL

* 1990s: Windows: a graphical operating systems, required chips to
support 2D graphics.

* New APIs starting appearing, to enable GUI programs

=|Clock| v | 4 || |[=]

Settings File Options indo

eversi >
File Disk Tree View Options Skill Help
Window Help

= File Manager uﬁ BB
rdfle Calendar Calc

Dire¢t

=0 [eedo

CAWINDOWS

&=cy

ESETUP =] CAWIND
BaL]

EETEC
[>]

1992

+ »
Selected 1 file(s) (0 bytes] out of 76

Windows 3 (1990) 1995

3D graphics in consoles (1993)

e Super Nintendo was not powerful enough to draw 3D graphics
e Shigeru Miyamoto really wanted a 3D flight simulator though
* Worked with a British software company to develop...

3D graphics in consoles (1993)

e Super Nintendo was not powerful enough to draw 3D graphics
e Shigeru Miyamoto really wanted a 3D flight simulator though
* Worked with a British software company to develop...

https://en.wikipedia.org/wiki/Star_Fox_(1993 video_game)

3D graphics in consoles (1993)

* Game cartridges shipped with a “mini GPU” on them:
* the Super FX

LA A

'-__————_———

ropo e

https://twitter.com/gameminesocials/status/13229465370775265287?s=20

3D graphics acceleration

* 1996 : First 3D graphics accelerator: 3Dfx Vodoo
* Discrete GPU

e Early 3D games: e.g. tomb raider
* Acquired by Nvidia in 2002

https://en.wikipedia.org/wiki/3dfx_Interactive

3D graphics acceleration

* 3D accelerators continued, many companies competing:
* Nvidia
o ATI
* 3Dfx
* and more...

* Next milestone in 1999:
* Nvidia coins the term “GPU”
* Compare with modern website

https://web.archive.org/web/20030814003456/www.nvidia.com/object/gpu.html

Programmable 3D accelerators

e 2001: Microsoft DirectX 8 required programmable vertex and pixel
shaders.

* 2001: First GPU to satisfy the requirement was Nvidia GeForce 3

* we are now on 17
e Used on the original Xbox

* Programmers started writing general programs for these GPUs:

* Present your data as a graphical input (e.g. Textures and Triangles)
* Read the output after a series of “graphics” API calls

GPGPU Programming

e 2006: Nvidia releases CUDA: programming language for their GPUs
« Supported by 8t generation CUDA devices.
* Integrated vertex and pixel cores into “shader cores”
» Support for IEEE floating point

 Soon after...

GPGPU Programming

e 2006: Nvidia releases CUDA: programming language for their GPUs
« Supported by 8t generation CUDA devices.
* Integrated vertex and pixel cores into “shader cores”
» Support for IEEE floating point

 Soon after...

* 2008: The Khronos Group launches OpenCL for cross vendor GPGPU:
* including AMD, Intel, Qualcomm

Khronos Group K H RON O S®

G ROUP

 Started in 2000 by Apple as a standards body for graphics API:
* A way to unify APIs across many different vendors

at the time: ATI, Nvidia, Intel, Sun Microsystems (and a few others)

* now: Many companies, including AMD, Nvidia, Intel, Qualcomm, ARM, Google

* OpenGL is maybe the biggest standard they maintain (for graphics)
* OpenCL is biggest for compute

e Vulkan is their new standard (will it catch on??)

* (disclosure: | am an individual contributor ©)

* Apple deprecated Khronos group standards to support Metal in 2018

https://en.wikipedia.org/wiki/Khronos_Group

Where are we now?

* Nvidia CUDA is widely used, driving many HPC and ML applications

e OpenCL is used to program other GPUs (although it is not as widely
used)

* Metal is used for Apple devices
* Vulkan has momentum

* New GPGPU programming languages are on the horizon:

* WebGPU - a javascript interface to unite Metal, Vulkan and DirectX
* Its ambitious! Will it work?!
* Available in canary builds of Chrome

GPU Shortages?

* Cryptocurrency:

e 2018 reported tripling of GPU prices and shortages due to increase demand
from miners.

* Still happening will lots of market fluctuations.

« Still plenty of GPUs in your phone, laptop, etc. ©

Teaching GPU programming
* This is difficult!

* Nvidia GPUs have the most straightforward programming model
(CUDA). They also have great PR.

* It is extremely difficult to get a class of 60 students access to Nvidia
GPUs these days.

 AWS? Expensive and often oversubscribed w.r.t. GPUs
* Department? ML folks get priority and super computing clusters are painful

Going forward

* The GPU programming lectures will use CUDA
* |tis widely used
* The programming model is straightforward

* Homework will use WebGPU, because it is widely supported
e There are more non-Nvidia GPUs in this room than Nvidia GPUs

Going forward

* The homework uses Javascript as its “"CPU” language, and webGPU as
its "GPU” language.

* We have provided generous skeletons for the homework. We can go
over some javascript, but it is a high-level language and should not be
hard to figure out what you need to do.

* The WebGPU portion is straight forward and | will provide a mapping
directly from what we talked about to what you need.

Homework 5- first look

* It is the first time offering this homework, so feedback is very
welcome and we will be generous with support.

* Thanks to Mingun Cho who basically did all the work setting up the
assignment!

Homework 5- first look

* Prerequisits
* Google Chrome Canary
* (if you have linux, Google Chrome Dev might work)

* Why do we need the Canary?

 WebGPU is new and support is inconsistent on main (Although it is officially
supported)

* Perhaps more interesting is the shared array buffer.

Homework 5 - first look

e Javascript shared array buffer:
* How javascript threads can actually share memory
e Similar to memory in C++

Shared memory and high-resolution timers were effectively disabled at the start of 2018 7 in light of
Spectre 7. In 2020, a new, secure approach has been standardized to re-enable shared memory.
With a few security measures, postMessage() will no longer throw for SharedArrayBuffer objects

and shared memory across threads will be available:

As a baseline requirement, your document needs to be in a secure context.

Your application will be in a secure context (you are writing and running locally!)

Homework 5- first look

* You will also need Node.js to run a local web server.

Homework 5- first look

e Let’s have a look!

Homework 5- first look

* Your assignment:
* N-body simulation

* Each particle interacts with every
other particle

e -

@

.« o

tme=0 time=1

time =2

Examples

ty:

e Grav

ids
* https

* Bo

(Vs
)
@)
fan
P
=

ipedia.org/w

//en.wik

Your homework

* Boids and N-body require a little bit of physics background so we will
do something simpler.

* |f you want to explore with physics please feel free

* Local attraction clustering:
* For each particle: find your closest neighbor

* You can take one step in the x direction and one step in the y direction
towards your closest neighbor.

Your homework

* Part 1 of your homework will do this on a single javascript thread

* Demo

Your homework

* Looks good, but with more particles, things start to go slower...

Your homework

* Looks good, but with more particles, things start to go slower...

* Part 2 of the homework is to implement with multiple CPU threads
using javascript webworkers

e Should get a linear speedup

* Part 3 is to implement with webGPU
e Should get a BIG speedup!

* You need to explore how many particles you can simulate while
keeping a 60 FPS framerate.

Let’s look at the code

Shared Array Buffer

* Like Malloc, allocates a “pointer” to a contagious array of bytes
e Can pass the “pointer” to different threads
* Need to instantiate a typed array to access the values

* Example

See you on Friday!

* Homework 4 due on Friday

* Homework 5 assigned on Friday

