
CSE113: Parallel Programming
March 2, 2022

• Topics:
• Finishing up Forward Progress

• Intro to GPUs

• Discuss HW 5

Announcements

• HW 4 is due on Friday
• ask ques'ons on Piazza
• Office hours:

• Reese has hours today, remotely
• I have hours tomorrow
• Tim and Sanya have their hours

• Grades for midterm are out
• let us know if you have ques'ons/comments by Monday
• I’ll release a solu'on sketch by next Friday

• Expect HW 3 grades by Friday

• HW 5 is released on Friday

Announcements

• Poten(al independent study on GPUs with Professor Narth
• Contact him if interested!

Today’s Quiz

• Due tomorrow by midnight; please do it!

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

Scheduler specifications

Scheduler specifications

• First, I think there was some confusion:

Scheduler specifications

• First, I think there was some confusion:
• What is a scheduler specifica(on?
• A programming guide should give you a scheduler specificaCon
• As a programmer, you need to make sure that your program is safe to run

under the scheduler
• This is similar to the memory model, however, there are no “fences” in the

scheduler.
• For example mutexes can starve under the system scheduler, then you simply

can’t use mutexes on that system.
• C++ let’s you query the threading library to see what scheduler they support.

We studied 4 schedulers

The fair scheduler

• every thread that has not terminated will “eventually” get a chance to
execute.

• “concurrent forward progress”: defined by C++
not guaranteed, but encouraged (and likely what you will observe)

• “weakly fair scheduler”: defined by classic concurrency textbooks

• The fair scheduler disallows starva(on cycles
• waiCng will always be finite (but no bounds on Cme)

Schedulers

• A fair scheduler typically requires preemption

Thread 0

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources
Operating

System

Schedulers

• A fair scheduler typically requires preemption

Thread 0

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources

Thread 0 has
had enough

time

Opera;ng
System

Schedulers

• A fair scheduler typically requires preemption

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources

Who to put
on now?

Thread 0
Opera;ng

System

Parallel Forward Progress

• “Any thread that has executed at least 1 instruction, is guaranteed to
continue to be fairly executed”

• Also called:
• “Parallel Forward Progress”: by C++
• “Persistent Thread Model”: by GPU programmers
• ”Occupancy Bound Execution Model”: in some of my papers

A power-saving scheduler

Core 0 Core 1 Core 2

t0t1t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

preempted

A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

preempted

A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

The HSA scheduler

• The thread with the lowest ID that hasn’t terminated is guaranteed to
eventually be executed. Also known as the energy-saving scheduler

• Called:
• “HSA” - Heterogeneous System Architecture, programming language

proposed by AMD for new systems.

• The HSA language appears to be defunct now, but the scheduler is a good fit
for mobile devices (esp. mobile GPUs).

A power-saving scheduler

Core 0 Core 1 Core 2

t0t1t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

preempted

A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

preempted

A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5
threads

thread pool

😥

😴

The unfair scheduler

• Any cycle in the LTS can poten(ally get stuck

• Think like the energy-saver scheduler without thread ids.

m:0
0:next_i:0.0
1:next_i:1.0

label:0

m:1
0:next_i:0.1
1:next_i:1.0

Thread 0

label:2

Thread 1

m:1
0:next_i:0.0
1:next_i:1.1

label:1

T1
label:3

m:0
0:next_i:0.0
1:next_i:END

m:1
0:next_i:0.1
1:next_i:END

T0
label:4

m:0
0:next_i:END
1:next_i:END

label:6
m:0
0:next_i:END
1:next_i:1.0

label:7
m:1
0:next_i:END
1:next_i:1.1

T0 T1

T1

T0

label:5

T0

T1

Is this program
guaranteed to
terminate?
What could go
wrong?

Thread 0:
0.0: while(CAS(&m,0,1) == false); //lock

// critical section
0.1: m.store(0); //unlock

Thread 1:
1.0: while(CAS(&m,0,1) == false); //lock

// critical section
1.1: m.store(0); //unlock

Forever?
0 → 1 → 1 → 1 → 1 → 1 → 1 → 1
0 → 2 → 2 → 2 → 2 → 2 → 2 → 2

Thread 0:
0.0: flag.store(1);

Thread 1:
1.0: while(flag.load() == 0);

flag:0
0:next_i:0.0
1:next_i:1.0

label:0

Thread 0

Thread 1

flag:1
0:next_i:END
1:next_i:1.0

Thread 1

flag:1
0:next_i:END
1:next_i:END

Forever?
0 →0 →0 →0 →0 →0 →0 →0....

label:1 label:2

What does this mean?

• Mutex worked under parallel scheduler
• Mutex didn’t work under energy saving scheduler

• Flag passing worked under energy saving scheduler
• Flag passing didn’t work under parallel scheduler

• They are incompatible!

Demo

• What happens when your program hangs?

New example...

A different type of non-terminaJon

Hallway problem

🚶

A different type of non-termination

Hallway problem

🚶

A different type of non-termination

Hallway problem

🚶

A different type of non-termination

Hallway problem

🚶

A different type of non-termination

Hallway problem

🚶

A different type of non-terminaJon

Hallway problem

🚶

Can they dance around each other forever?

Thread 0:
... do {
0.0 x.store(0);
0.1 } while (x.load() != 0)

Thread 1:
... do {
1.0 x.store(1);
1.1 } while (x.load() != 1)

Each thread stores their thread id,
and then loads the thread id. It loops while
it doesn’t see its id

Each thread gets a chance to execute, but they
get in each others way.

This is called a livelock

Thread 0:
... do {
0.0 x.store(0);
0.1 } while (x.load() != 0)

Thread 1:
... do {
1.0 x.store(1);
1.1 } while (x.load() != 1)

x:0
0:next_i:0.0
1:next_i:1.0

T0

x:0
0:next_i:0.1
1:next_i:1.0

x:1
0:next_i:0.1
1:next_i:1.1

T1

x:1
0:next_i:0.0
1:next_i:1.1

T0

x:0
0:next_i:0.1
1:next_i:1.1

T0
T1

par+al LTS
T0

T1

T1

T1

Livelock

• All threads are geUng a turn, but they are constantly geUng in each
others way

• Requires a different type of fairness
• Strong fairness
• All threads get a turn, and for a variable amount of Cme
• Tends to work on CPU threads due to natural variance of processors and

preempCon
• Can actually hang on GPUs - much more regular scheduler

New material

Schedule

• Introduction to GPUs

• Look briefly at homework
• We will look more on Friday

GPUs: a brief history

• Hard to track everything down
• First chapter of CUDA by Example
• hXps://www.techspot.com/arCcle/650-history-of-the-gpu/

• Please send me any other references you might find!

The very beginning

• Specialized hardware to accelerate
graphics rendering

• One of the first real-'me computers:
Whirlwind 1 at MIT (1951)
• Flight simulator for bombers
• vector graphics

Image from: hSps://ohiostate.pressbooks.pub/graphicshistory/chapter/2-1-whirlwind-and-sage/

SpecializaJon

• Next 30 years, specialized hardware for specialized so\ware to
display 2D graphics

• Specialized
• Typically ran specific programs
• portability was not a top priority
• Even the idea of portable ISAs were not mainstream

Multi-program devices

• 1977: Television Interface Adapter
• One of the first (and widely produced) portable (i.e. mulCple program) GPUs

from: hSps://en.wikipedia.org/wiki/Television_Interface_Adaptor

OS integraJon

• 1990s: Windows: a graphical opera(ng systems, required chips to
support 2D graphics.

• New APIs star(ng appearing, to enable GUI programs

Windows 3 (1990)

1992

1995

https://en.wikipedia.org/wiki/DirectX

hSps://en.wikipedia.org/wiki/Microso^_Windows

hSps://en.wikipedia.org/wiki/OpenGL

3D graphics in consoles (1993)

• Super Nintendo was not powerful enough to draw 3D graphics
• Shigeru Miyamoto really wanted a 3D flight simulator though
• Worked with a Bri(sh so\ware company to develop...

3D graphics in consoles (1993)

• Super Nintendo was not powerful enough to draw 3D graphics
• Shigeru Miyamoto really wanted a 3D flight simulator though
• Worked with a Bri(sh so\ware company to develop...

hSps://en.wikipedia.org/wiki/Star_Fox_(1993_video_game)

3D graphics in consoles (1993)

• Game cartridges shipped with a “mini GPU” on them:
• the Super FX

hSps://twiSer.com/gameminesocials/status/1322946537077526528?s=20

3D graphics acceleraJon

• 1996 : First 3D graphics accelerator: 3Dfx Vodoo
• Discrete GPU
• Early 3D games: e.g. tomb raider
• Acquired by Nvidia in 2002

hSps://en.wikipedia.org/wiki/3dfx_Interac;ve

3D graphics acceleraJon

• 3D accelerators con(nued, many companies compe(ng:
• Nvidia
• ATI
• 3Dfx
• and more...

• Next milestone in 1999:
• Nvidia coins the term “GPU”
• Compare with modern website

https://web.archive.org/web/20030814003456/www.nvidia.com/object/gpu.html

Programmable 3D accelerators

• 2001: Microso\ DirectX 8 required programmable vertex and pixel
shaders.

• 2001: First GPU to sa(sfy the requirement was Nvidia GeForce 3
• we are now on 17
• Used on the original Xbox

• Programmers started wri(ng general programs for these GPUs:
• Present your data as a graphical input (e.g. Textures and Triangles)
• Read the output acer a series of “graphics” API calls

GPGPU Programming

• 2006: Nvidia releases CUDA: programming language for their GPUs
• Supported by 8th generaCon CUDA devices.
• Integrated vertex and pixel cores into “shader cores”
• Support for IEEE floaCng point

• Soon a\er...

GPGPU Programming

• 2006: Nvidia releases CUDA: programming language for their GPUs
• Supported by 8th generaCon CUDA devices.
• Integrated vertex and pixel cores into “shader cores”
• Support for IEEE floaCng point

• Soon a\er...

• 2008: The Khronos Group launches OpenCL for cross vendor GPGPU:
• including AMD, Intel, Qualcomm

Khronos Group

• Started in 2000 by Apple as a standards body for graphics API:
• A way to unify APIs across many different vendors
• at the time: ATI, Nvidia, Intel, Sun Microsystems (and a few others)
• now: Many companies, including AMD, Nvidia, Intel, Qualcomm, ARM, Google

• OpenGL is maybe the biggest standard they maintain (for graphics)
• OpenCL is biggest for compute
• Vulkan is their new standard (will it catch on??)
• (disclosure: I am an individual contributor J)

• Apple deprecated Khronos group standards to support Metal in 2018

hSps://en.wikipedia.org/wiki/Khronos_Group

Where are we now?

• Nvidia CUDA is widely used, driving many HPC and ML applica(ons
• OpenCL is used to program other GPUs (although it is not as widely

used)
• Metal is used for Apple devices
• Vulkan has momentum

• New GPGPU programming languages are on the horizon:
• WebGPU - a javascript interface to unite Metal, Vulkan and DirectX
• Its ambiCous! Will it work?!
• Available in canary builds of Chrome

GPU Shortages?

• Cryptocurrency:
• 2018 reported tripling of GPU prices and shortages due to increase demand

from miners.

• SCll happening will lots of market fluctuaCons.

• SCll plenty of GPUs in your phone, laptop, etc. J

Teaching GPU programming

• This is difficult!

• Nvidia GPUs have the most straighkorward programming model
(CUDA). They also have great PR.

• It is extremely difficult to get a class of 60 students access to Nvidia
GPUs these days.
• AWS? Expensive and ocen oversubscribed w.r.t. GPUs
• Department? ML folks get priority and super compuCng clusters are painful

Going forward

• The GPU programming lectures will use CUDA
• It is widely used
• The programming model is straighlorward

• Homework will use WebGPU, because it is widely supported
• There are more non-Nvidia GPUs in this room than Nvidia GPUs

Going forward

• The homework uses Javascript as its ”CPU” language, and webGPU as
its ”GPU” language.

• We have provided generous skeletons for the homework. We can go
over some javascript, but it is a high-level language and should not be
hard to figure out what you need to do.

• The WebGPU por(on is straight forward and I will provide a mapping
directly from what we talked about to what you need.

Homework 5 - first look

• It is the first (me offering this homework, so feedback is very
welcome and we will be generous with support.

• Thanks to Mingun Cho who basically did all the work seUng up the
assignment!

Homework 5 - first look

• Prerequisits
• Google Chrome Canary
• (if you have linux, Google Chrome Dev might work)

• Why do we need the Canary?
• WebGPU is new and support is inconsistent on main (Although it is officially

supported)

• Perhaps more interesCng is the shared array buffer.

Homework 5 - first look

• Javascript shared array buffer:
• How javascript threads can actually share memory
• Similar to memory in C++

Your applica9on will be in a secure context (you are wri9ng and running locally!)

Homework 5 - first look

• You will also need Node.js to run a local web server.

Homework 5 - first look

• Let’s have a look!

Homework 5 - first look

• Your assignment:
• N-body simulation

• Each particle interacts with every
other particle

;me = 0 ;me = 1 ;me = 2

Examples

• Gravity:

• Boids:
• hXps://en.wikipedia.org/wiki/Boids

Your homework

• Boids and N-body require a liple bit of physics background so we will
do something simpler.
• If you want to explore with physics please feel free

• Local attraction clustering:
• For each particle: find your closest neighbor
• You can take one step in the x direction and one step in the y direction

towards your closest neighbor.

Your homework

• Part 1 of your homework will do this on a single javascript thread

• Demo

Your homework

• Looks good, but with more par(cles, things start to go slower...

Your homework

• Looks good, but with more par(cles, things start to go slower...

• Part 2 of the homework is to implement with mul(ple CPU threads
using javascript webworkers
• Should get a linear speedup

• Part 3 is to implement with webGPU
• Should get a BIG speedup!

• You need to explore how many par(cles you can simulate while
keeping a 60 FPS framerate.

Let’s look at the code

Shared Array Buffer

• Like Malloc, allocates a ”pointer” to a contagious array of bytes

• Can pass the “pointer” to different threads

• Need to instan(ate a typed array to access the values

• Example

See you on Friday!

• Homework 4 due on Friday

• Homework 5 assigned on Friday

