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Announcements

* HW 5 is out

* Hopefully you have started!
* Due the day before the final
 LATE HW 5 WILL NOT BE ACCEPTED

* This is not my policy, this is the university policy!

| will hold office hours Tuesday from 3 -5 PM.
* TAs and Tutors will NOT have office hours

* HW 3 grades are released
* Let us know ASAP if there are issues

* We are grading HW 4 right now



Announcements

* Final is on March 17
* | will release it by 8 AM, and you will have until midnight to turn it in
* |f you want to allocate time for it, our official final time is 4 PM to 7 PM

* Same rules at the midterm:
* Do not discuss with class mates
* Do not google specific answers or ask questions on forums
* You can use your notes, the slides, and the internet to google for general concepts.

worth 30% of your grade.

Late final will not be accepted
* This is university policy, not mine



Announcements

* SETs are out!
* Please fill them out; | know they are a pain and we’re all busy

e But it has an outsized effect on classes like this one
* New class
* New content
* New professor

* | would love to teach this in the future, SET feedback will help me do that



Quizzes

* No more quizzes!



Review



Optimizing GPU code



Parallelism



Instruction Buffer

Called a streaming multiprocessor
Dispatch Unit
.
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https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

Warp Scheduler

Dispatch Unit
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Register File (16,384 x 32-bit)




First parallelization attempt

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function

_ number of threads
vector add<<<1,32>>>(d a, d b, d c, size); thread id



Concurrency



GPU Memory




GPU Memory

CPU Memory:

Fast: Low Latency

Easily saturated: Low Bandwidth
Scales well: up to 1 TB

DDR

2-lane straight highway
driven on by sports cars

CPU GPU

System Memory Graphics Memory

Different technologies

GPU Memory:

slow: High Latency

hard to saturate: High Bandwidth
doesn’t scale: 32 GB

GDDR, HBM

16-lane highway on a windy
road driven by semi trucks



GPU Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

CPU

System Memory

GPU

Graphics Memory



Warps

A warp is a group of 32
threads that execute in
parallel on a streaming
multiprocessor
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Preemption and concurrency?

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver



Preemption and concurrency?

warp 1

warp 2 We can hide latency through
preemption and concurrency!
warp 0

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver



Preemption and concurrency?

memory access
600 cycles

warp 0

Streaming
Multiprocessor

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

/.

Driver

We can hide latency through
preemption and concurrency!



Preemption and concurrency?

memory access
600 cycles

warp 0

Streaming
Multiprocessor

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

/.

preempt warp O
and put warp 1 on

Driver

We can hide latency through
preemption and concurrency!



Preemption and concurrency?

warp 2 _
We can hide latency through

preemption and concurrency!

warp 1 warp 0

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver



Preemption and concurrency?

memory access
600 cycles

warp 1

Streaming
Multiprocessor

Graphics Memory

warp 2

warp 0

<A NVIDIA.

CUDA.

/.

preempt warp 1
and put warp 2 on

Driver

We can hide latency through
preemption and concurrency!



Preemption and concurrency?

warp 0
We can hide latency through

i I
warp 1 preemption and concurrency!

warp 2

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver



Preemption and concurrency?

memory access
600 cycles

warp 2
Streaming

Multiprocessor

Graphics Memory

warp 0

warp 1

<A NVIDIA.

CUDA.

/.

preempt warp 2
and put warp 0 on

Driver

We can hide latency through
preemption and concurrency!



Preemption and concurrency?

Hey, my memory has arrived!

warp 0

Streaming
Multiprocessor

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

/.

preempt warp 2
and put warp 0 on

Driver

We can hide latency through
preemption and concurrency!



Preemption and concurrency?

- InstructionBuffer But wait, | thought preemption was expensive?
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bound on number of warps: 32

Lots of specialized HW to help out
(register files, scheduler, instruction buffer)



Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function
Lets launch with 32 warps

vector add<<<1,1024>>>(d a, d b, d c, size);



Memory accesses



Optimizing memory accesses

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?




4 cores are accessing memory. What can happen

GPU Memory
All read the same value

a[0] a[0] a[0] a[0]




4 cores are accessing memory. What can happen

All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

broadcast

GPU Memory

a[0]

a[0]

a[0] a[0]

a[0]




4 cores are accessing memory. What can happen

All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

broadcast

GPU Memory

a[0]

a[0]

a[0] a[0]

a[0]




4 cores are accessing memory. What can happen

GPU Memory
Read contiguous values

a[0] a[1] al2] a[3]




4 cores are accessing memory. What can happen

GPU Memory

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] al2] a[3]




4 cores are accessing memory. What can happen

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes
a[0]

a[0] a[1] al2] a[3]




4 cores are accessing memory. What can happen

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

GPU Memory

a[0:4]

a[0] a[1] al2] a[3]




4 cores are accessing memory. What can happen

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

stream

GPU Memory

a[0]

a[0:4]

a[1] al2]

a[3]




Chunked Pattern

array a

the first element accessed
by the 4 threads sharing a
load store unit. What
sort of access is this?

Computation

can easily be array b + +
divided into

+ + +

threads ..-.

Thread O - Blue
Thread 1 -
Thread 2 - Green - -

Thread 3 - Orange array ¢
R

How can we fix this



Stride Pattern

Computation
can easily be
divided into
threads

Thread O - Blue
Thread 1 -
Thread 2 - Green
Thread 3 - Orange

array a

array b

array c




Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
for (int i1 = threadIdx.x; i1 < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

calling the function

vector add<<<1,1024>>>(d a, d b, d c, size);



How far did that get us?



Programming a GPU

The CPU in
The GPU in my professor
my PhD laptop ‘ workstation
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NVIDIA. SRS63 3.60GHZ
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40m

Nvidia 940m :
1.8 Billion t - Intel i7-9700K
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33 TDP 2.16 Billion transistors
95 TDP
ESt. $13O https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html ESt $3 16

https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/



Multiple streaming multiprocessors

We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SM's
big ML GPUs have 32. My GPU has 4
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Multiple streaming multiprocessors

We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SM's
big ML GPUs have 32. My little GPU has 4
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Multiple streaming multiprocessors

CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
No limit on blocks: launch as many as you need to map 1 thread to 1 data element
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Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
for (int i1 = threadIdx.x; i1 < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

calling the function
Launch with many thread blocks

vector add<<<1,1024>>>(d a, d b, d c, size);



Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
d a[i] = d b[i] + d c[1];

}

Need to recalculate some thread ids.
calling the function

Launch with many thread blocks

vector add<<<1024,1024>>>(d a, d b, d c, size);
Now we have 1 thread for each element

#define SIZE (1024%1024)



How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)




block O:

How does this work plock 1:

block 2:

Consider thread ids as a flattened array (which is often how they are used to index memory)

Say we specify 8 threads per block (this can be up to 1024)




. block 0:

How does this work plock 1

global thread ids block 2:
0 1 2 3 4 5 6 Vi 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

local thread ids

Consider thread ids as a flattened array (which is often how they are used to index memory)
Say we specify 8 threads per block (this can be up to 1024)
Thread ids are local to a block

Compute global id? blockIdx.x * blockDim.x + threadIdx.x



Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
d a[i] = d b[i] + d c[1];

}

Need to recalculate some thread ids.
calling the function

Launch with many thread blocks

vector add<<<1024,1024>>>(d a, d b, d c, size);
Now we have 1 thread for each element

#define SIZE (1024%1024)



Final Round

The CPU in
The GPU in my professor
my PhD laptop ‘ workstation
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WebGPU

* The language is wgsl
* It is new, there are not many examples (and the specification change!)
 Official specification is here: https://www.w3.org/TR/WGSL/

* Due to canvas scaling: you will need to scale distance values by 1000
» Step size should be .001
* cluster distance should be .003



WebGPU

* wgsl is NOT javascript
 Javascript is interpreted: not possible on GPUs

* wgsl is compiled
* into Vulkan on Linux
* into Metal on Apple
* into HLSL on Windows

* No printing (can be difficult to debug)



WebGPU

e variables (optional types):

var <name> = <value>;

var cluster dist = 0.003;

var <name> : <type> = <value>;
0.003;

var cluster dist : £32



WebGPU

* types:

* {32

* u32

e {32
vec2<f32>
array<type>

* structures

e Built-ins (global id)

struct Particle {
pos : vec2<f32>;
¥

struct Particles {
particles : array<Particle>;
b

var : vec2<f32> = particlesA.particles[index].pos;

var : u32 = GlobalInvocationID.x;

you have one thread for each particle!



Web GPU

* Built in functions:
e arrayLength
e sqrt
* pow
 distance



Web GPU

For loops:

(var : u32 = Qu; i < arrayLength(&particlesA.particles); i = i + 1u)



Web GPU

* Types can be frustrating

* But compiler errors will help you, and you can do casts.



Wrapping up



Thank youl!

* You are now all now experts on parallel programming!

* You're all going to do great on the final! March 17
* Available all day
* Our scheduled time is 4 - 7 PM if you want to schedule time

* Thank you for being such great students during such a hard time. I'm
proud of all of youl!

* See you around!



