CSE113: Parallel Programming

March 11, 2022

~ Instruction Buffer

Warp Scheduler

Dispatch Unit Dispatch Unit
L L

* Topics: Register File (16,384 x 32-bit)
* Conclude GPU Programming core| [Gorel [Gorel woist
* Homework 5 WebGPU Core Core Core LDiST
* Conclude class Core |Core [Core w0t

Core Core @ Core LDIST
Core Core Core LD/ST
Core | Core | Core LDIST
Core Core Core LDIST

Core Core Core LD/IST

Announcements

* HW 5 is out

* Hopefully you have started!
* Due the day before the final
 LATE HW 5 WILL NOT BE ACCEPTED

* This is not my policy, this is the university policy!

| will hold office hours Tuesday from 3 -5 PM.
* TAs and Tutors will NOT have office hours

* HW 3 grades are released
* Let us know ASAP if there are issues

* We are grading HW 4 right now

Announcements

* Final is on March 17
* | will release it by 8 AM, and you will have until midnight to turn it in
* |f you want to allocate time for it, our official final time is 4 PM to 7 PM

* Same rules at the midterm:
* Do not discuss with class mates
* Do not google specific answers or ask questions on forums
* You can use your notes, the slides, and the internet to google for general concepts.

worth 30% of your grade.

Late final will not be accepted
* This is university policy, not mine

Announcements

* SETs are out!
* Please fill them out; | know they are a pain and we’re all busy

e But it has an outsized effect on classes like this one
* New class
* New content
* New professor

* | would love to teach this in the future, SET feedback will help me do that

Quizzes

* No more quizzes!

Review

Optimizing GPU code

Parallelism

Instruction Buffer

Called a streaming multiprocessor
Dispatch Unit
.

woah, 32 cores!

We should parallelize our application! Core
Core
Core
Core
Core
Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

Warp Scheduler

Dispatch Unit
4

Register File (16,384 x 32-bit)

First parallelization attempt

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function

_ number of threads
vector add<<<1,32>>>(d a, d b, d c, size); thread id

Concurrency

GPU Memory

GPU Memory

CPU Memory:

Fast: Low Latency

Easily saturated: Low Bandwidth
Scales well: up to 1 TB

DDR

2-lane straight highway
driven on by sports cars

CPU GPU

System Memory Graphics Memory

Different technologies

GPU Memory:

slow: High Latency

hard to saturate: High Bandwidth
doesn’t scale: 32 GB

GDDR, HBM

16-lane highway on a windy
road driven by semi trucks

GPU Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

CPU

System Memory

GPU

Graphics Memory

Warps

A warp is a group of 32
threads that execute in
parallel on a streaming
multiprocessor

Instruction Buffer
Warp Scheduler

Dispatch Unit
4

Dispatch Unit
4

Register File (16,384 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

LOVST

Preemption and concurrency?

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver

Preemption and concurrency?

warp 1

warp 2 We can hide latency through
preemption and concurrency!
warp 0

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver

Preemption and concurrency?

memory access
600 cycles

warp 0

Streaming
Multiprocessor

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

/.

Driver

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

memory access
600 cycles

warp 0

Streaming
Multiprocessor

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

/.

preempt warp O
and put warp 1 on

Driver

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

warp 2 _
We can hide latency through

preemption and concurrency!

warp 1 warp 0

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver

Preemption and concurrency?

memory access
600 cycles

warp 1

Streaming
Multiprocessor

Graphics Memory

warp 2

warp 0

<A NVIDIA.

CUDA.

/.

preempt warp 1
and put warp 2 on

Driver

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

warp 0
We can hide latency through

i I
warp 1 preemption and concurrency!

warp 2

Streaming @Z nV|D|Ao

Multiprocessor
CUDA.

/.

Graphics Memory Driver

Preemption and concurrency?

memory access
600 cycles

warp 2
Streaming

Multiprocessor

Graphics Memory

warp 0

warp 1

<A NVIDIA.

CUDA.

/.

preempt warp 2
and put warp 0 on

Driver

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

Hey, my memory has arrived!

warp 0

Streaming
Multiprocessor

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

/.

preempt warp 2
and put warp 0 on

Driver

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

- InstructionBuffer But wait, | thought preemption was expensive?

Warp Scheduler

Dispatch Unit

A

Register File (16,384 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Dispatch Unit
.
bound on number of warps: 32

Lots of specialized HW to help out
(register files, scheduler, instruction buffer)

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function
Lets launch with 32 warps

vector add<<<1,1024>>>(d a, d b, d c, size);

Memory accesses

Optimizing memory accesses

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

4 cores are accessing memory. What can happen

GPU Memory
All read the same value

a[0] a[0] a[0] a[0]

4 cores are accessing memory. What can happen

All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

broadcast

GPU Memory

a[0]

a[0]

a[0] a[0]

a[0]

4 cores are accessing memory. What can happen

All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

broadcast

GPU Memory

a[0]

a[0]

a[0] a[0]

a[0]

4 cores are accessing memory. What can happen

GPU Memory
Read contiguous values

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

GPU Memory

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes
a[0]

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

GPU Memory

a[0:4]

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

stream

GPU Memory

a[0]

a[0:4]

a[1] al2]

a[3]

Chunked Pattern

array a

the first element accessed
by the 4 threads sharing a
load store unit. What
sort of access is this?

Computation

can easily be array b + +
divided into

+ + +

threads ..-.

Thread O - Blue
Thread 1 -
Thread 2 - Green - -

Thread 3 - Orange array ¢
R

How can we fix this

Stride Pattern

Computation
can easily be
divided into
threads

Thread O - Blue
Thread 1 -
Thread 2 - Green
Thread 3 - Orange

array a

array b

array c

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
for (int i1 = threadIdx.x; i1 < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

calling the function

vector add<<<1,1024>>>(d a, d b, d c, size);

How far did that get us?

Programming a GPU

The CPU in
The GPU in my professor
my PhD laptop ‘ workstation

LB B B B BN N B e O
INTEL(R) CORE™ i7
i7-9700K

<

NVIDIA. SRS63 3.60GHZ

X930F139

GeFonrce
40m

Nvidia 940m :
1.8 Billion t - Intel i7-9700K
. Hion transistors - .
33 TDP 2.16 Billion transistors
95 TDP
ESt. $13O https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html ESt $3 16

https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Multiple streaming multiprocessors

We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SM's
big ML GPUs have 32. My GPU has 4

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
I £

Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Multiple streaming multiprocessors

We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SM's
big ML GPUs have 32. My little GPU has 4

Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler

Instruction Buffer ‘ Instruction Buffer
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
I I s -

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
I - s -

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core LDIST Core Core Core LDIST Core Core | Core Core Core Core LDIST

Core Core Core Core Core Core Core Core Core Core Core Core
Core | Core | Core LDIST Core | Core | Core LD/ST Core | Core | Core LD/ST Core | Core | Core LD/ST
Core Core | Core LD/ST Core Core | Core LD/ST Core | Core | Core LD/ST Core Core | Core LD/ST
Core | Core | Core LDJST Core | Core | Core LDJST Core | Core | Core LD/ST Core | Core | Core LD/ST
Core Core Core Core Core Core Core Core Core Core Core Core
Core Core Core Core Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core Core Core Core Core

Multiple streaming multiprocessors

CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
No limit on blocks: launch as many as you need to map 1 thread to 1 data element

Instruction Buffer Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Uit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
* + + + * *

Register File (16,384 x 32-bit) Register File (16,384 x 32 Register File (16,384 x 32-bit)

Core Core Core Core Core Core LD Core Core Core Core
Core Core Core Core Core Core Core Core Core
[Core Core Core Core Core
Core Core Core Core Core Core Core
Core Core Z [Core ¢ Core Core Core
Core Core Core Core Core Core Core Core
Core Core Core Core Core Core Core Core

Core Core Core z Core

Instruction Buffer Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Uit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
* * * + * +

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core | |Core | Core |Core LoisT Core | Core |Core |Core LoisT
Core Core Core | | Core | Core |Core LoisT Core Core Core LoisT
Core Core Core | | Core | |Core | Core LoisT Core Core Core
Core Core [Core Core Core Core Core
Core Core Core Core Core
Core Core Core Core Core
Core Core Core Core Core

Core Core Core | | Core | Lo [

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
for (int i1 = threadIdx.x; i1 < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

calling the function
Launch with many thread blocks

vector add<<<1,1024>>>(d a, d b, d c, size);

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
d a[i] = d b[i] + d c[1];

}

Need to recalculate some thread ids.
calling the function

Launch with many thread blocks

vector add<<<1024,1024>>>(d a, d b, d c, size);
Now we have 1 thread for each element

#define SIZE (1024%1024)

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

block O:

How does this work plock 1:

block 2:

Consider thread ids as a flattened array (which is often how they are used to index memory)

Say we specify 8 threads per block (this can be up to 1024)

. block 0:

How does this work plock 1

global thread ids block 2:
0 1 2 3 4 5 6 Vi 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

local thread ids

Consider thread ids as a flattened array (which is often how they are used to index memory)
Say we specify 8 threads per block (this can be up to 1024)
Thread ids are local to a block

Compute global id? blockIdx.x * blockDim.x + threadIdx.x

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
d a[i] = d b[i] + d c[1];

}

Need to recalculate some thread ids.
calling the function

Launch with many thread blocks

vector add<<<1024,1024>>>(d a, d b, d c, size);
Now we have 1 thread for each element

#define SIZE (1024%1024)

Final Round

The CPU in
The GPU in my professor
my PhD laptop ‘ workstation

LB B B B BN N B e O
INTEL(R) CORE™ i7
i7-9700K

<

NVIDIA. SRS63 3.60GHZ

X930F139

GeFonrce
40m

Nvidia 940m :
1.8 Billion t - Intel i7-9700K
. Hion transistors - .
33 TDP 2.16 Billion transistors
95 TDP
ESt. $13O https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html ESt $3 16

https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

WebGPU

* The language is wgsl
* It is new, there are not many examples (and the specification change!)
 Official specification is here: https://www.w3.org/TR/WGSL/

* Due to canvas scaling: you will need to scale distance values by 1000
» Step size should be .001
* cluster distance should be .003

WebGPU

* wgsl is NOT javascript
 Javascript is interpreted: not possible on GPUs

* wgsl is compiled
* into Vulkan on Linux
* into Metal on Apple
* into HLSL on Windows

* No printing (can be difficult to debug)

WebGPU

e variables (optional types):

var <name> = <value>;

var cluster dist = 0.003;

var <name> : <type> = <value>;
0.003;

var cluster dist : £32

WebGPU

* types:

* {32

* u32

e {32
vec2<f32>
array<type>

* structures

e Built-ins (global id)

struct Particle {
pos : vec2<f32>;
¥

struct Particles {
particles : array<Particle>;
b

var : vec2<f32> = particlesA.particles[index].pos;

var : u32 = GlobalInvocationID.x;

you have one thread for each particle!

Web GPU

* Built in functions:
e arrayLength
e sqrt
* pow
 distance

Web GPU

For loops:

(var : u32 = Qu; i < arrayLength(&particlesA.particles); i = i + 1u)

Web GPU

* Types can be frustrating

* But compiler errors will help you, and you can do casts.

Wrapping up

Thank youl!

* You are now all now experts on parallel programming!

* You're all going to do great on the final! March 17
* Available all day
* Our scheduled time is 4 - 7 PM if you want to schedule time

* Thank you for being such great students during such a hard time. I'm
proud of all of youl!

* See you around!

