
CSE113: Parallel Programming
March 11, 2022

• Topics:
• Conclude GPU Programming
• Homework 5 WebGPU
• Conclude class

Announcements

• HW 5 is out
• Hopefully you have started!
• Due the day before the final
• LATE HW 5 WILL NOT BE ACCEPTED

• This is not my policy, this is the university policy!

• I will hold office hours Tuesday from 3 - 5 PM.
• TAs and Tutors will NOT have office hours

• HW 3 grades are released
• Let us know ASAP if there are issues

• We are grading HW 4 right now

Announcements

• Final is on March 17
• I will release it by 8 AM, and you will have until midnight to turn it in
• If you want to allocate time for it, our official final time is 4 PM to 7 PM
• Same rules at the midterm:

• Do not discuss with class mates
• Do not google specific answers or ask questions on forums
• You can use your notes, the slides, and the internet to google for general concepts.

• worth 30% of your grade.

• Late final will not be accepted
• This is university policy, not mine

Announcements

• SETs are out!
• Please fill them out; I know they are a pain and we’re all busy
• But it has an outsized effect on classes like this one

• New class
• New content
• New professor

• I would love to teach this in the future, SET feedback will help me do that

Quizzes

• No more quizzes!

Review

Optimizing GPU code

Parallelism

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

woah, 32 cores!

We should parallelize our application!

Called a streaming multiprocessor

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads
thread id

Concurrency

GPU Memory

CPU GPU

System Memory Graphics Memory

GPU Memory

CPU GPU

System Memory Graphics Memory

CPU Memory:
Fast: Low Latency
Easily saturated: Low Bandwidth
Scales well: up to 1 TB
DDR

GPU Memory:
slow: High Latency
hard to saturate: High Bandwidth
doesn’t scale: 32 GB
GDDR, HBM

Different technologies2-lane straight highway
driven on by sports cars

16-lane highway on a windy
road driven by semi trucks

GPU Memory

CPU GPU

System Memory Graphics Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Warps

A warp is a group of 32
threads that execute in
parallel on a streaming
multiprocessor

Preemption and concurrency?

Streaming
Multiprocessor

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Driver

Preemption and concurrency?

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Streaming
Multiprocessor

Driver

Preemption and concurrency?

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

memory access
600 cycles

Streaming
Multiprocessor

Driver

Preemption and concurrency?

Graphics Memory

warp 0

warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 0
and put warp 1 on

Streaming
Multiprocessor

Driver

Preemption and concurrency?

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

Streaming
Multiprocessor

Driver

Preemption and concurrency?

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 1
and put warp 2 on

Streaming
Multiprocessor

Driver

Preemption and concurrency?

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

Streaming
Multiprocessor

Driver

Preemption and concurrency?

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 2
and put warp 0 on

Streaming
Multiprocessor

Driver

Preemption and concurrency?

Graphics Memory

warp 0

warp 1

warp 2

We can hide latency through
preemption and concurrency!

Hey, my memory has arrived!

preempt warp 2
and put warp 0 on

Streaming
Multiprocessor

Driver

Preemption and concurrency?
But wait, I thought preemption was expensive?

bound on number of warps: 32

Lots of specialized HW to help out
(register files, scheduler, instruction buffer)

Go back to our program

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Memory accesses

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value

a[0] a[0] a[0] a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

a[0] a[1] a[2] a[3]

a[0:4]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

a[0] a[1] a[2] a[3]

a[0:4]

stream

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store unit. What
sort of access is this?

How can we fix this

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

How far did that get us?

Programming a GPU

Nvidia 940m
1.8 Billion transistors
33 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. My GPU has 4

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. My little GPU has 4

Multiple streaming multiprocessors
CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
No limit on blocks: launch as many as you need to map 1 thread to 1 data element

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Launch with many thread blocks

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
d_a[i] = d_b[i] + d_c[i];

}

calling the function

vector_add<<<1024,1024>>>(d_a, d_b, d_c, size);

Need to recalculate some thread ids.

#define SIZE (1024*1024)

Launch with many thread blocks

Now we have 1 thread for each element

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

Say we specify 8 threads per block (this can be up to 1024)

block 0:
block 1:
block 2:

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

Say we specify 8 threads per block (this can be up to 1024)

Thread ids are local to a block

Compute global id? blockIdx.x * blockDim.x + threadIdx.x

block 0:
block 1:
block 2:

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

local thread ids

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
global thread ids

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
d_a[i] = d_b[i] + d_c[i];

}

calling the function

vector_add<<<1024,1024>>>(d_a, d_b, d_c, size);

Need to recalculate some thread ids.

#define SIZE (1024*1024)

Launch with many thread blocks

Now we have 1 thread for each element

Final Round

Nvidia 940m
1.8 Billion transistors
33 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

WebGPU

• The language is wgsl
• It is new, there are not many examples (and the specification change!)
• Official specification is here: https://www.w3.org/TR/WGSL/

• Due to canvas scaling: you will need to scale distance values by 1000
• Step size should be .001
• cluster distance should be .003

WebGPU

• wgsl is NOT javascript

• Javascript is interpreted: not possible on GPUs

• wgsl is compiled
• into Vulkan on Linux
• into Metal on Apple
• into HLSL on Windows

• No printing (can be difficult to debug)

WebGPU

• variables (optional types):

var <name> = <value>;
var cluster_dist = 0.003;

var <name> : <type> = <value>;
var cluster_dist : f32 = 0.003;

WebGPU

• types:
• i32
• u32
• f32
• vec2<f32>
• array<type>

• structures

• Built-ins (global id)

struct Particle {
pos : vec2<f32>;

};

struct Particles {
particles : array<Particle>;

};

var index_pos : vec2<f32> = particlesA.particles[index].pos;

var index : u32 = GlobalInvocationID.x;

you have one thread for each particle!

Web GPU

• Built in functions:
• arrayLength
• sqrt
• pow
• distance

Web GPU

for (var i : u32 = 0u; i < arrayLength(&particlesA.particles); i = i + 1u)

For loops:

Web GPU

• Types can be frustrating

• But compiler errors will help you, and you can do casts.

Wrapping up

Thank you!

• You are now all now experts on parallel programming!

• You’re all going to do great on the final! March 17
• Available all day
• Our scheduled time is 4 - 7 PM if you want to schedule time

• Thank you for being such great students during such a hard time. I’m
proud of all of you!

• See you around!

