
CSE113: Parallel Programming
Jan. 28, 2022

• Topics:
• RW mutexes
• Hierarchical aware locks
• Impact of real world data conflicts

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Announcements

• We are starting to grade HW 1, expect grades by the time HW 2 is due
(potentially sooner)
• Ask about issues early
• In some cases you might be asked about performance issues

• Homework 2 is due next Friday
• People are making good progress on part 1
• Today’s lecture will get you through the rest
• After Monday you can start sharing results (not code)

Announcements

• Schedule:
• Starting Module 3 next week: Concurrent data structures!

• Midterm assigned Feb. 7:
• Available for 1 week, not timed
• Designed to take ~3 hours
• open book, open note, open slide
• Do not discuss at all with classmates
• You can use google, but do not google questions exactly, or ask on

stackoverflow

Returning to in-person

• Monday’s synchronous lecture will be in-person!
• Kresge 327
• Record lectures and post them after
• Quizes (attendance) will maintain the same format, please do them!

Today’s Quiz

• Due Monday by class time

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

Fairness of RMW locks

are EXCH/CAS
locks starvation free?

core 0

core 1

mutex
request

EXCH()
critical section

flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

EXCH()

mutex
acquire critical section

EXCH()

missed it!
spin

core 0

core 1

mutex
request

atomic_add

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!! (OS preemption, garbage
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

load()
mutex
acquire

are Ticket locks are fair?

Mutex optimizations

Optimizations: relaxed peeking

• What about the load in the loop? Remember the memory fence? Do
we need to flush our caches every time we peek?
• We only need to flush when we actually acquire the mutex

Optimizations: backoff

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

Optimizations: backoff

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

Optimizations: backoff

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

Optimizations: backoff

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

• Even using relaxed peeking, two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Thread 0 finishes
critical
section

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Thread 0 finishes
critical
section

mutex release

Optimizations: backoff

• Two issues remain:
• Loads still cause bus traffic (even if its not as bad as RMWs)
• In non-parallel systems, concurrent threads can get in the way of progress

core 0

Say threads 0 and 1 are executing concurrently

mutex request mutex acquiremutex request

Thread 0 in critical
section!

Thread 0 preempted
by thread 1!

spin spin spin spin

nothing meaningful is
happening!

Thread 1 preempted
by thread 0!

Thread 0 finishes
critical
section

mutex release

avoid this!

Optimizations: backoff

try_lock

• another common mutex API method: try_lock()
• one-shot mutex attempt (implementation defined)
• You can then implement your own sleep/yield strategy around this

Example: UI refresh

New material!

Schedule

• Reader-Write (RW) mutexes

• Hierarchical aware locks

• Impact of data-races

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

But what happens more frequently
than either of those things?

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

But what happens more frequently
than either of those things?

int check_balance() {
return tylers_account;

}

Different actors accessing it concurrently
Credit monitors
Accountants
Personal

which of these operations can safely be
executed concurrently?

Remember the definition of a data-conflict:
at least one write

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

But what happens more frequently
than either of those things?

int check_balance() {
return tylers_account;

}

No reason why this function can’t be
called concurrently. It only needs to
be protected if another thread calls
one of the other functions.

Reader-Writer Mutex

• different lock and unlock functions:
• Functions that only read can perform a “read” lock
• Functions that might write can perform a regular lock

• regular locks ensures that the writer has exclusive access (from other reader
and writers)

• but multiple reader threads can hold the lock in reader state

Reader-Writer Mutex

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
tylers_account--;

}

void get_paid() {
tylers_account++;

}

int check_balance() {
return tylers_account;

}

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
return tylers_account;

}

Reader-Writer Mutex

Global variable: int tylers_account

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Reader-Writer Mutex Implementation

• Primitives that we built the previous mutexes with:
• atomic load, atomic store, atomic RMW

• We have a new tool!
• Regular mutex!

Reader-Writer Mutex Implementation

• We will use a mutex
internally.

• We will keep track of
how many readers are
currently “holding” the
mutex.

• We will keep track of if a
writer is holding the
mutex.

Reader-Writer Mutex Implementation

• Reader locks

Reader-Writer Mutex Implementation

• Regular locks

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = false
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = false
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = false
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = true
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = true
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = true
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = False
num_readers = 0

reset!

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

Thread 0 Thread 1 Thread 2 Thread 3

writer = False
num_readers = 0

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 2

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 2

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 2

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

can we lock yet?

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 1

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 0

void buy_coffee() {
m.lock();
tylers_account--;
m.unlock();

}

void get_paid() {
m.lock();
tylers_account++;
m.unlock();

}

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 0 Thread 1

int check_balance() {
m.reader_lock();
int t = tylers_account;
m.reader_unlock();
return t;

}

Thread 2 Thread 3

writer = False
num_readers = 0

Reader Writer lock

• This implementation potentially starves writers
• The common case is to have lots of readers!

• Think about ways how an implementation might be more fair to
writers.

How this looks in C++

#include <shared_mutex>
using namespace std;

shared_mutex m;

m.lock_shared() // reader lock
m.unlock_shared() // reader unlock
m.lock() // regular lock
m.unlock() // regular unlock

Schedule

• Reader-Write (RW) mutexes

• Hierarchical aware locks

• Impact of data-races

Optimization: Hierarchical locks

• NUMA (non-uniform memory access) systems
• heterogeneous systems (CPU GPU)

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

CPU CPU

LLC

Main Memory

LLC

SM SM

GPU

For example: SoCs like IphoneFor example: Large server nodes

Discrete GPUs communicate through PCIE

Optimization: Hierarchical locks

• Any sort of communication is very
expensive:
• Spinning triggers expensive coherence

protocols.

• cache flushes between NUMA nodes
is expensive (transferring memory
between critical sections)

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

core 0 Core 1

mutex

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

core 0 Core 1

mutex

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

core 0 Core 1

mutex

slow!

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

core 0 Core 1

mutex

tyelrs_account

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

core 0 Core 1

mutex

tyelrs_account tyelrs_account

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

core 0 Core 1

mutex

tyelrs_account tyelrs_account

What if there is tons of data here?

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

Ideally core 2 accesses the mutex less frequently
than core 1

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

who should acquire?

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

who should acquire?

If core 2 acquires first
communication must go
through the interconnect

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

If core 2 acquires first
communication must go
through the interconnect

mutex acquire

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

If core 2 acquires first
communication must go
through the interconnect

mutex acquire mutex release

mutex

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

If core 2 acquires first
communication must go
through the interconnect

When core 1 finally acquires,
it requires another expensive
trip through the interconnect

mutex acquire mutex release

mutex acquire

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

If core 2 acquires first
communication must go
through the interconnect

When core 1 finally acquires,
it requires another expensive
trip through the interconnect

mutex acquire mutex release

mutex acquire

Two trips through the interconnect!!

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

who should acquire?

Lets go back in time and make
a different decision!

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

If core 1 acquires first
communication can occur through
the LLC of NUMA node 0

mutex acquire

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex

If core 1 acquires first
communication can occur through
the LLC of NUMA node 0

When core 2 finally acquires it
requires an expensive trip through
the interconnect

mutex acquire mutex release

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex acquire mutex release

If core 1 acquires first
communication can occur through
the LLC of NUMA node 0

When core 2 finally acquires it
requires an expensive trip through
the interconnect

mutex acquire

mutex

CPU CPU CPU CPU

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

core 0

core 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request

core 0 Core 2

mutex

core 2 mutex request

Core 1

mutex acquire mutex release

If core 1 acquires first
communication can occur through
the LLC of NUMA node 0

When core 2 finally acquires it
requires an expensive trip through
the interconnect

mutex acquire

Only 1 trip through the interconnect

Hierarchical locks

• If thread T in NUMA node N holds the mutex:
• the mutex should prioritize other threads in NUMA node N to acquire the

mutex when T releases it.

• We will do this in two steps:
• Slightly modify the CAS mutex
• Add targeted sleeping

Hierarchical locks

In the new mutex,
we switch from a flag
to an int.

the value of -1 means the
mutex is available

New CAS lock

Hierarchical locks

In the new mutex,
we switch from a flag
to an int.

the value of -1 means the
mutex is available

main idea is that
threads put their
thread ids in the mutex

No longer possible with
exchange lock!

new lock: we attempt to put our thread id in the mutex when we lock.

previously we didn’t require a thread id. We just used true and false

Unlock is boring as usual

We have a new lock

• But there isn’t any hierarchy yet.

• What value is in ‘e’ after a failed lock attempt?

We have a new lock

• But there isn’t any hierarchy yet.

• What value is in ‘e’ after a failed lock attempt?

we know what thread currently owns the mutex!

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Given a thread ID, we can compute the NUMA node ID of the thread
using integer division (floor):

thread_id / 2

thread_id / THREADS_PER_NUMA_NODE

GPUs give this as a builtin

Hierarchical lock

• We know our thread id (passed in)
• We know the thread id of the thread that owns the mutex (returned

in ‘e’)

• Check if we are in the same NUMA node as the thread that owns the
mutex.
• if not, sleep for a long time
• else sleep for a short time

Starvation?

• Tune sleep times. You shouldn’t starve the other nodes!

• Advanced: have internal mutex state that counts how long the mutex
has stayed with in the NUMA node.

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0:
tid 1:
tid 2:

Mutex counter:
Local_Com: 0

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0: Acquired
tid 1: sleep 1 ms
tid 2: sleep 100 ms

mutex acquire

Mutex counter:
Local_Com: 1

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0:
tid 1:
tid 2:

Mutex counter:
Local_Com: 1

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0: sleep 1 ms
tid 1: acquired
tid 2: sleep 100 ms

Mutex counter:
Local_Com: 2

mutex acquire

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0: sleep 1 ms
tid 1: acquired
tid 2: sleep 100 ms

Mutex counter:
Local_Com: 2

mutex acquire

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0: sleep 1 ms * Local_Com = 2 ms
tid 1: acquired
tid 2: sleep 100 ms

Mutex counter:
Local_Com: 2

mutex acquire

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0:
tid 1:
tid 2:

Mutex counter:
Local_Com: 1

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0: acquired
tid 1: sleep 1 ms * Local_Com = 3 ms
tid 2: sleep 100 ms

Mutex counter:
Local_Com: 3

mutex acquire

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0: acquired
tid 1: sleep 1 ms * Local_Com = 3 ms
tid 2: sleep 100 ms

Mutex counter:
Local_Com: 3

mutex acquire

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0:
tid 1:
tid 2:

Mutex counter:
Local_Com: 3

tid 0 tid 1 tid 2 tid 3

LLC LLC

Memory Slice 0 Memory Slice 1

Interconnect

NUMA node 0 NUMA node 1

Example:

tid 0:
tid 1:
tid 2:

Mutex counter:
Local_Com: 1

mutex acquire

reset because
we moved across nodes

Further reading

• More elaborate schemes:
• Queue locks - spinning on different cache lines
• Composite locks - combining queue locks and RMW locks
• Fair hierarchical locks

Perspective

• Keep in mind that the book was published nearly 10 years ago
• Synchronization costs have changed!

My experience:
Impact of lock implementation had over 100x impact on Fermi Nvidia GPUs (circa 2010)
Impact of lock implementation had less than 2x on Maxwell Nvidia GPUs (circa 2016)

These days many devices have efficient coherence protocols. The optimizations we
discussed in class will give you good performance on most of today’s devices.

BUT: Maybe history will repeat itself with RISC-V chips?!

Schedule

• Reader-Write (RW) mutexes

• Hierarchical aware locks

• Impact of data-races

Data conflicts

• Data conflicts are undefined
• Compiler can do crazy things
• rare interleavings cause bugs that are extremely rare

• Your code should use mutexes to avoid data conflicts!

• What happens when you don’t?

Horrible data conflicts in the real world

Therac 25: a radiation therapy machine
• Between 1987 and 1989 a software bug caused 6 cases where

radiation was massively overdosed

• Patients were seriously injured and even died.

• Bug was root caused to be a data conflict.

• https://en.wikipedia.org/wiki/Therac-25

Horrible data conflicts in the real world

2003 NE power blackout
• second largest power outage in history: 55 million people were

effected

• NYC was without power for 2 days, estimated 100 deaths

• Root cause was a data conflict

• https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

But checking for data conflicts is hard...

• Tools are here to help (Professor Flanagan is famous in this area)

How do they work?

• Two approaches

• Happens-before: build a partial order of mutex lock/unlocks. Any
memory access that can’t be ordered in this partial order is a conflict.

• Lockset: Every shared memory location has is associated with a set of
locks. Refine the lockset for every access and evaluate the final result.

Dynamic Analysis

• Thread sanitizer:
• a compiler pass built into Clang
• About 10x overhead when you run the program
• Identifies data conflicts
• deadlocks

• Examples

Static Analysis

• Facebook Infer:
• Statically checks for many issues (memory safety, assertions)
• Can check for races in concurrent classes
• Main support is for Java, although they claim support for C++

Current state of data conflicts

• A recent tool:
• Checks for C++ races
• Scales to large programs

• Reports:
• Chrome has 6 unresolved data-conflicts
• Firefox has 52 unresolved data-conflicts

• Difficult to fix! 6.7 million lines of code in
Chrome

Summary

• Avoid data conflicts! They can cause serious bugs that trigger very
very very rarely. (heisenbugs).
• Better to use too many mutexes than not enough

• Use tools to help you!
• Infer can helps with Java
• Thread sanitizer helps with C++

Next week

• Starting Module 3: Concurrent data structures!

• Work on HW 2! You now have everything you need to complete it!

