
CSE113: Parallel Programming
Jan. 19, 2022

• Topics:
• Mutual exclusion examples
• Multiple mutexes
• Mutex properties
• Atomic operation properties

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release

Announcements

• Hope everyone had a nice holiday weekend!

• Homework 1 is due on Friday!
• Due at midnight, but instructor support ends at 5 PM
• Ask questions on Piazza, come to office/tutoring hours

• Reese has 1.5 hours today
• I have 2 hours tomorrow
• Tim has 1 hour tomorrow
• Sanya has 1 hour on Friday

• Homework 2 is assigned on Friday

Announcements

• Homework 1 notes:
• No assigned speedup required. You should get a noticeable speedup from ILP

• AMD processors are being a little strange on part 2
• Please note the processor in your write-up

• You can start to share results now. Everyone’s results will be slightly different
• Sometimes you cannot account for small differences

• We should be running the code for more iterations

Today’s Quiz

• Didn’t save L I will update it after class. It will be ready by 3:00 PM

• Due by midnight the next day, or on Fridays, it is due before the next
class

• From what I hear, the plan is to go back in person as planned 🎉

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iteration 3 computes index 5

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Reasoning about parallel programs

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

Programs to events:

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

time

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

tyler_account: 0 tyler_account: 1 tyler_account: 0

in our example there are 252 possible interleavings!

time time

time

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+= 1

*tylers_account = T1_load

T0_load = *tylers_account T1_load = *tylers_account T0_load -= 1 T1_load+= 1 *tylers_account = T1_load *tylers_account = T0_load

tylers_account has -1 at the
end of this interleaving!

concurrent execution

How to reason about our programs

• We don’t want data conflicts
• Requires reasoning about the compiler and machine. Not portable and

extremely error prone
• Technically undefined in C++ and Java

• View simpler versions of the program
• e.g. one loop iteration

• High-level properties
• Final value in the account after execution

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Mutex events

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

at this point, thread 0 holds the mutex.
another thread cannot acquire the mutex until thread 0 releases the mutex
also called the critical section.

mutex request mutex acquire

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex request mutex acquire mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex acquire

disallowed!

mutex request mutex acquire mutex request

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution
Thread 0 has released the mutex

mutex request mutex acquire mutex request tylers_account -= 1 mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Thread 1 can take the mutex
and enter the critical section

mutex request mutex acquire mutex request tylers_account -= 1 mutex release mutex acquire

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

A mutex restricts the number of allowed interleavings
Critical section are mutually exclusive: i.e. they cannot interleave

tylers_account += 1 mutex release

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

It means we don’t have to think about 3 address code

tylers_account += 1 mutex release

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
if (tylers_account < -100) {
printf(“warning!\n”);
return;

}
m.unlock();
return;

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Make sure to unlock your mutex!

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex release

say tylers_account is -1000

printf(“warning!\n”);

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex releaseprintf(“warning!\n”);

concurrent execution

mutex request mutex acquire mutex request tylers_account -= 1 printf(“warning!\n”)

Thread 1 is stuck!

On to the lecture!

Lecture schedule

• Mutex performance considerations

• Multiple mutexes

Mutex Performance

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

Mutex Performance

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

in a parallel system without the mutex

core 0

core 1 tylers_account += 1 tylers_account += 1 tylers_account += 1

tylers_account -= 1 tylers_account -= 1 tylers_account -= 1

Mutex Performance

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

in a parallel system with the mutex

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads

Code example

Mutex Performance

try to keep mutual exclusion sections small!

Code example with overhead

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

Long periods of waiting in the threads

Overhead

Overhead

mutex request

Long periods of
waiting in the
threads

Mutex Performance

Try to keep mutual exclusion sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

overlap the overhead (i.e. computation without any data conflicts)

Overhead

Overhead Peronal_account

Overhead

Mutex alternatives?

Other ways to implement accounts?

Atomic Read-modify-write (RMWs): primitive instructions that
implement a read event, modify event, and write event indivisibly, i.e. it
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
int tmp = *addr; // read
tmp += value; // modify
*addr = tmp; // write

}

other operations: max, min, etc.

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

tylers_account -= 1;

Tyler’s employer

tylers_account += 1;

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Two indivisible events.
Either the coffee or the employer comes first
either way, account is 0 afterwards.

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Code example

Atomic RMWs

Pros? Cons?

Atomic RMWs

Pros? Cons?

Not all architectures support RMWs (although more common with
C++11)

Limits critical section (what if account needs additional updating?)

atomic types need to propagate through the entire application

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• Need to protect both of them using a mutex
• Easy, we can just the same mutex
• Show implementation

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request personal_account += 1mutexP acquire mutexP release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

Code example

Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• They need to examine the accounts at the same time. They need to
acquire both locks

Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• Code example

Multiple mutexes

• Our program deadlocked! What happened?

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

IRS has the personal mutex and won’t release it until it acquires the business mutex.
UCSC has the business mutex and won’t release it until it acquires the personal mutex.

This is called a deadlock!

Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 1 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur

Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 1 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur

Double check with testing

Programming with mutexes can be HARD!

make sure all data conflicts are protected with a mutex

keep critical sections small

balance between having many mutexes (provides performance) but
gives the potential for deadlocks

Towards Implementations

Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time.
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until
the thread that has acquired the mutex releases it.

mutex acquire

disallowed!

mutex request mutex acquire mutex request

Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time.
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until
the thread that has acquired the mutex releases it.

mutex acquiremutex request mutex acquire mutex request mutex release

allowed!

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

allowed

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

also allowed

Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex
must eventually obtain the mutex.

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex
must eventually obtain the mutex.

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

Difficult to provide in practice and timing variations usually provide this property naturally

Properties of mutexes

Recap: three properties

• Mutual Exclusion: Two threads cannot be in the critical section at the same
time

• Deadlock Freedom: If a thread has requested the mutex, and no thread
currently holds the mutex, the mutex must be acquired by one of the
requesting threads

• Starvation Freedom (optional): A thread that requests the mutex must
eventually obtain the mutex.

Building blocks

• Memory reads and memory writes
• later: read-modify-writes

• We need to guarantee that our reads and writes actually go to
memory.
• And other properties we will see soon

• To do this, we will use C++ atomic operations

A historical perspective

• Adding concurrency support to a programming language is hard!
• The memory model defines how threads can safely share memory

• Java tried to do this,

wikipedia

Brian Goetz (2019)

A historical perspective

• How is C++?

• Has issues (imprecise, not modular)
• but at least considered safe
• Specification makes it difficult to reason about all programs
• Open problem!

• Luckily mutexes (and their implementations) avoid the problematic
areas of the language!

Our primitive instructions

• Types: atomic_int

• Interface (C++ provides overloaded operators):
• load
• store

• Properties:
• loads and stores will always go to memory.
• compiler memory fence
• hardware memory fence

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

• Compiler makes reasoning about parallel code hard, but big
performance improvements:
• O(2048) vs. O(1)

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

can be optimized to: can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

a[i] = 6;
x = a[i];

x = 6;

can be optimized to: can be optimized to: can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

• And many others... especially when you consider mixing with other
optimizations
• Very difficult to understand when/where memory accesses will actually occur

in your code

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

Compiler cannot keep personal_account
in a register past the mutex

because this thread needs to see the
updated view

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?

initially personal_account is 0

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1; *personal_account = reg;

personal_account is -1

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1

Atomic properties

• Also provides a memory barrier

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account 0

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account 0

mutex: C0
personal_account NA

mutex: C0
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account 0

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

stale value!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0

rewind

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: free
personal_account -1

mutex: free
personal_account NA

mutex: free
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence

got the right value

• Memory Fence (or Memory Barrier)

different architectures have different memory barriers

Intel X86 naturally manages caches in order

ARM and PowerPC let cache values flow out-of-order
GPUs let caches flow out-of-order

RISC-V has two models:
more like x86: easier to program
more like ARM: faster and more energy efficient

For mutexes, atomics will naturally handle the memory fences for us!

Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

C0 memory operations are performed and flushed

C1 memory operations have not yet been performed and cache is invalidated

Thanks!

• Next time:
• Work on a simple mutex implementation using atomics

• Work on your homework and use office hours, piazza and tutors

• Do the quiz!

