
CSE113: Parallel Programming
Jan. 12, 2022

• Topics:
• ILP in reduction loops
• C++ threads

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Announcements

• Office hours and tutors are available this week!
• Announcements on Canvas and Piazza with zoom links for tutors
• Reese posted his
• I post mine around noon on Thursday (along with a sign up sheet)

• Homework 1 is released
• You can get started setting up the docker
• After today you can do part 2 and 3

• Sign up for Piazza and ask questions on there

Let us know about any typos in the homework!

Today’s Quiz

• We’ll continue having them given after lecture for now

• Make sure to do it!

Previous quiz

Previous quiz

Previous quiz

False sharing

False Sharing

C0

L1
cache

LLC cache

C1

L1
cache

C2

L1
cachea[0]:a[15]

I

a[0]:a[15]
M

a[0]:a[15]
I

when one core modifies a value
in the cache line, it invalidates
everyone else’s cache line.

This is called False Sharing

C0 accesses a[0] C1 accesses a[1] C2 accesses a[2]

Avoid false sharing with padding

C0

L1
cache

LLC cache

C1

L1
cache

C2

L1
cachea[0]:a[15]

E

a[32]:a[47]
E

a[16]:a[31]
E

With padding, all threads
have exclusive access to their
lines! No need to trigger invalidations
or write-back each operation

C0 accesses a[0] C1 accesses a[16] C2 accesses a[32]

Thanks!

• Thanks for all the interesting answers on quizzes!

• 57 submitted: some people aren’t submitting

Review

• Instruction level parallelism

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

instr1;instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2; instr1;instr3;

Superscalar

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

Superscalar

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel

Smaller instructions

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

convert to c++
compiler

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Create a data dependency
graph (DDG)

Different instructions
can be executed in parallel

Loop unrolling

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}

Saves one addition and one comparison per loop, but doesn’t help with ILP

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let green highlights indicate
instructions from iteration i.

Let blue highlights indicate
instructions from iteration i + 1.

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i,2);
...
SEQ(i,N); // end iteration for i
SEQ(i+1,1);
SEQ(i+1,2);
...
SEQ(i+1, N); // end iteration for i + 1

}

Let SEQ(i,j) be the jth
instruction of SEQ(i).
Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);
...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

On to the lecture!

Lecture Schedule

• ILP for reduction loops

• C++ threads

Lecture Schedule

• ILP for reduction loops

• C++ threads

Loop Unrolling for Reduction Loops

• Prior approach examined loops with independent iterations and
chains of dependent computations

• Now we will look at reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: ?

max: ?

min: ?

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
a[0] = REDUCE(a[0], a[i]);

}

1 2 3 4 5 6+ + + + +

1 2 3 4 5 6

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
a[0] = REDUCE(a[0], a[i]);

}

1 2 3 4 5 6+ + + + +

1 2 3 4 5 6

What is associativity?

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

36 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

independent
instructions
can be done
in parallel!

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

consider instr1 and instr2 have a data dependence, and instrX’s are independent

instr1;
instrX0;
instrX1;
...
instr2;

independent instructions. If they overwrite the register storing instr1’s result, then it will have to
be stored to memory and retrieved before instr2

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

Solutions include using a resource model to guide the topological ordering. Highly
architecture dependent. Algorithms become more expensive

Consider timing the compile time in your homework assignment

Priority Topological Ordering
of DDGs

r7 = 2 * a;
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Lecture Schedule

• ILP for reduction loops

• C++ threads

C++ Threads

• Introduction
• Learn as needed throughout class

• Multi-threading officially introduced in C++11
• only widely available after ~2014
• official specification
• cross-platform

• Before C++ threads
• pthreads

C++ Threads

• Introduction
• Learn as needed throughout class

• Multi-threading officially introduced in C++11
• only widely available after ~2014
• official specification
• cross-platform

• Before C++ threads
• pthreads
• volatile

C++ Threads

• Main idea:
• run functions concurrently

main

launch foo(a,b,c)

C++ Threads

• Main idea:
• run functions concurrently

main

foo(a,b,c)

main needs to wait for foo.
join()

launch foo(a,b,c)

waiting

foo finishes

C++ Threads

• Main idea:
• run functions concurrently

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

header and namespace

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

Launches a concurrent
thread that executes foo

Stores a handle in thread_handle
(don’t lose the handle!)

constructor takes in the function, and
all arguments

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

Requires C++14

clang++ -std=c++14 main.cpp

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

calling join() on the thread handle
will cause main to wait for the
thread launched with thread_handle
to finish.

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

After foo finishes,
main starts executing again

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

What happens if you don’t
join your threads?

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

JOIN YOUR THREADS!!!

What happens if you don’t
join your threads?

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

return value?

Doesn’t have to be void,
but it is ignored

how to get values back
from threads?

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int &c) {
// return a + b;
c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, ref(ret));
// code here runs concurrently with foo
thread_handle.join();
cout << ret << endl;
return 0;

}

Options

pass by reference (C++)

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
// return a + b;
*c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, &ret);
// code here runs concurrently with foo
thread_handle.join();
cout << ret << endl;
return 0;

}

Options

pass by address (C++ or C)

#include <thread>
#include <iostream>
using namespace std;

int c;
void foo(int a, int b) {
// return a + b;
c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2);
// code here runs concurrently with foo
thread_handle.join();
cout << c << endl;
return 0;

}

Options

global variable
(don’t do this!)

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
// return a + b;
*c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, &ret);
// code here runs concurrently with foo
cout << ret << endl;
thread_handle.join();
return 0;

}

What if....

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
// return a + b;
*c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, &ret);
// code here runs concurrently with foo
cout << ret << endl;
thread_handle.join();
return 0;

}

What if....

Undefined behavior!
Cannot access the same
values concurrently
without protection!

Next module we will talk
protection (locks)

SPMD programming model

• Same program, multiple data

• Main idea: many threads execute the same function, but they operate
on different data.

• How do they get different data?
• each thread can access their own thread id, a contiguous integer starting at 0

up to the number of threads

SPMD programming model

lets do this in parallel!
each thread increments different
elements in the array

void increment_array(int *a, int a_size) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

The function gets a thread id and the
number of threads

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

A few options on how to split up the work
lets do round robin

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

iteration 1 computes index 0

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

iteration 2 computes index 2

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

iteration 3 computes index 4

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iteration 1 computes index 1

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iteration 2 computes index 3

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iteration 3 computes index 5

SPMD programming model
void increment_array(int *a, int a_size, int tid, int num_threads);

#define THREADS 8
#define A_SIZE 1024
int main() {
int *a = new int[A_SIZE];
// initialize a
thread thread_ar[THREADS];
for (int i = 0; i < THREADS; i++) {
thread_ar[i] = thread(increment_array, a, A_SIZE, i, THREADS);

}
for (int i = 0; i < THREADS; i++) {
thread_ar[i].join();

}
delete[] a;
return 0;

}

Thank you!

• Remember to do the quiz today!

• Get started on homework
• Should be able to do all parts now

• Start on module 2 on Friday

Extra if time

Concurrency vs. Parallelism

• Abstract tasks:
• In the abstract: a sequence of computation
• Given an input, produces an output

Concurrency vs. Parallelism

• Abstract tasks:
• In the abstract: a sequence of computation
• Given an input, produces an output

• Concrete tasks:
• Application (e.g. Spotify and Chrome)
• Function
• Loop iterations
• Individual instructions
• Circuit level?

granularity

coarse

fine

Concurrency vs. Parallelism

Task 0 Task 1

task 1 starttask 0 start task 0 end task 1 end

Concurrency vs. Parallelism

Task 0 Task 1

task 1 starttask 0 start task 0 end task 1 end

C0

time

Concurrency vs. Parallelism

C0

time

Task 0 Task 1

Sequential execution
Not concurrent or parallel

all of task 0 executes all of task 1 executes

Concurrency vs. Parallelism

C0

time

Task 0 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

Concurrency vs. Parallelism

C0

time

The OS can preempt a thread
(remove it from the hardware resource)

Task 0 Task 0 Task 1 Task 1

Concurrency vs. Parallelism

C0

time

Task 0 Task 0Task 1 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

tasks are interleaved on the same processor

Concurrency vs. Parallelism

C0

time

Task 0 Task 0Task 1 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

• Definition:
• 2 tasks are concurrent if there is a point in

the execution where both tasks have
started and neither has ended.

Concurrency vs. Parallelism

C0

time

Task 0 Task 0Task 1 Task 1

The OS can preempt a thread
(remove it from the hardware resource)

• Definition:
• 2 tasks are concurrent if there is a point in

the execution where both tasks have
started and neither has ended.

task 0 start task 1 start task 0 end task 1 end

Concurrency vs. Parallelism

C0

time

C0

Task 0 Task 1

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks concurrent?

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks concurrent?

• 2 tasks are concurrent if there is a point
in the execution where both tasks have
started and neither has ended.

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks parallel?

Concurrency vs. Parallelism

C0

time

C0

Task 0

Task 1

are these tasks parallel?

• Definition:
• An execution is parallel if there is a point in the execution

where computation is happening simultaneously

Concurrency vs. Parallelism
• Examples:
• Neither concurrent or parallel (sequential)

C0

time

Task 0 Task 1

task 0 start task 1 start

task 0 end

task 1 end

Concurrency vs. Parallelism
• Examples:
• Concurrent but not parallel

C0

time

Task 0 Task 0Task 1 Task 1

task 0 start task 1 start task 0 end task 1 end

Concurrency vs. Parallelism
• Examples:
• Parallel and Concurrent

C0

time

C0

Task 0

Task 1

Concurrency vs. Parallelism
• Examples:
• Parallel but not concurrent?

C0

time

C0

Task 0 Task 1

Concurrency vs. Parallelism
• Examples:
• Parallel but not concurrent?

C0

time

C0

Task 0 Task 0 Task 1 Task 1

Concurrency vs. Parallelism
• Examples:
• Parallel execution but task 0 and task 1 are not concurrent?

C0

time

C0

Task 0

Task 0

Task 1

Task 1

Concurrency vs. Parallelism
• In practice:
• Terms are often used interchangeably.

• Parallel programming is often used by high performance engineers
when discussing using parallelism to accelerate things

• Concurrent programming is used more by interactive applications, e.g.
event driven interfaces.

