
CSE113: Parallel Programming
Jan. 10, 2022

• Topics:
• False sharing
• Instruction level parallelism (ILP)
• Loop unrolling

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Announcements

• Office hours and tutors are available this week!
• Announcements on Canvas and Piazza with zoom links for tutors
• Reese will post his before his office hours
• I post mine around noon on Thursday (along with a sign up sheet)

• Homework 1 is released
• You can get started setting up the docker
• After today you can do part 1
• After Wednesday you can do part 2
• After Friday you can do part 3

Let us know about any typos in the homework!

Today’s Quiz

• We’ll continue having them given after lecture for now

• Make sure to do it!

Previous quiz

Some answers

Some answers

Some answers

Some answers

Using your best guess, how much faster do you think a
program written in C/Java is than a program written in
Python? Give a few reasons explaining your guess. Feel
free to run a simple experiment and see what happens!

Thanks!

• Thanks for all the interesting answers on quizzes!

• For those of you who have not done the quizzes, please do so,
submitting them counts towards your grade!

Review

• Caches

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

latency
~10 cycles

L2
cache

L2
cache

L2
cache

L2
cache

2048 KB

LLC cachelatency
~40 cycles 12 MB

Cache lines
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache

Cache lines
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache

a[0] - a[15]

Cache organization

Cache organization

Cache

Memory

0 7 2

50 2 63 4 117 8 129 10 1713 14 15 16

Direct mapped: every memory location can go exactly
one place in the cache.

cache block location = (address/64) % (cache size)

1

address

value

0x1400x00 0x80 0x1800xC0 0x100 0x2C00x1C0 0x200 0x3000x240 0x280 0x4400x340 0x380 0x3C0 0x4000x40

address

value

0x00 0x1C0 0x80

Example: Read address 0x180

Cache organization
Cache

N-way Associative: every memory location can go N
places in the cache.

cache block location (address/64) % (cache size / N)

More places to store collisions.

example 2-way associative
Memory

50 2 63 4 117 8 129 10 1713 14 15 161

address

value

0x1400x00 0x80 0x1800xC0 0x100 0x2C00x1C0 0x200 0x3000x240 0x280 0x4400x340 0x380 0x3C0 0x4000x40

0

address

value

0x00

address

value

set 1

set 2 Read 0x180

7 2

0x1C0 0x80

Cache coherence

• MESI protocol

• Cache line can be in 1 of 4 states:

• Modified - the cache contains a modified value and it must be written back to the
lower level cache

• Exclusive - only 1 cache has a copy of the value

• Shared - more than 1 cache contains the value, they must all agree on the value

• Invalid - the data is stale and a new value must be fetched from a lower level cache

Cache coherence

C0

L1
cache

LLC cache

C1

L1
cache

C2

L1
cache

a0:128

a0:128
I

a0:256
M

r2 = load(a0)r1 = load(a0)

On to the lecture!

Lecture Schedule

• False Sharing

• Instruction Level parallelism

• Loop unrolling

Lecture Schedule

• False Sharing

• Instruction Level parallelism

• Loop unrolling

Example

• A function that increments a memory location ITERATION times

void repeat_increment(volatile int *a) {
for (int i = 0; i < ITERATIONS; i++) {

int tmp = *a;
tmp +=1;
*a = tmp;

}
}

Example

• A function that increments a memory location ITERATION times

void repeat_increment(volatile int *a) {
for (int i = 0; i < ITERATIONS; i++) {

int tmp = *a;
tmp +=1;
*a = tmp;

}
}

guarantees that memory accesses are not optimized!

Example

• A function that increments a memory location ITERATION times

• Do this for 8 elements:
• Allocate a contiguous array

Example

• A function that increments a memory location ITERATION times

• Do this for 8 elements:
• Allocate a contiguous array

• Loop through the 8 elements and increment each one:

for (int i = 0; i < NUM_ELEMENTS; i++) {
repeat_increment(a+i);

}

Example

• We can also do each array element in parallel!

for (int i = 0; i < NUM_ELEMENTS; i++) {
thread(repeat_increment, a+i);

}

for (int i = 0; i < NUM_ELEMENTS; i++) {
repeat_increment(a+i);

}

Don’t worry, we will go over C++ thread
in more detail on Thursday

Example

• Run example

What’s going on?

C0

L1
cache

LLC cache

C1

L1
cache

C2

L1
cachea[0]:a[15]

I

a[0]:a[15]
M

a[0]:a[15]
I

when one core modifies a value
in the cache line, it invalidates
everyone else’s cache line.

This is called False Sharing

C0 accesses a[0] C1 accesses a[1] C2 accesses a[2]

Fix?

Fix?

• Padding: give each element its own cache line:
• Recall cache line is size 16 ints, so we will use 16x more memory

int a[NUM_ELEMENTS * 16];

for (int i = 0; i < NUM_ELEMENTS; i++) {
thread(repeat_increment, a+(i*16));

}

What’s going on?

C0

L1
cache

LLC cache

C1

L1
cache

C2

L1
cachea[0]:a[15]

E

a[32]:a[47]
E

a[16]:a[31]
E

With padding, all threads
have exclusive access to their
lines! No need to trigger invalidations
or write-back each operation

C0 accesses a[0] C1 accesses a[16] C2 accesses a[32]

Lecture Schedule

• False Sharing

• Instruction Level parallelism

• Loop unrolling

Instruction-level Parallelism (ILP)

• Parallelism from a single stream of instructions.
• Output of program must match exactly a sequential execution!

• Widely applicable:
• most mainstream programming languages are sequential
• most deployed hardware has components to execute ILP

• Done by a combination of programmer, compiler, and hardware

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

two instructions can be executed in
parallel if they are independent

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Many times, dependencies can be
easily tracked in the compiler:

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

A compiler will turn this into an
abstract syntax tree (AST)

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

Now we build a “data dependency graph” (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

instr1;instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2; instr1;instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

6 cycles for 3 independent
instructions

Converges to 1 instruction per cycle

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

What if the
instructions depend on
each other?

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr3;

instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr3;

instr2;

and so on...

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

9 cycles for 3 instructions

converges to 3 cycles per
instruction

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;instr2;

and so on...

We converge to 1 cycle per instruction
again!

How can hardware execute ILP?

• Executing multiple instructions at once:

• Very Long Instruction Word (VLIW) architecture
• Multiple instructions are combined into one by the compiler

• Superscalar architecture:
• Several sequential operations are issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel

It’s even more complicated

• Out-of-order execution delays dependent instructions
• Reorder buffers (RoB) track dependencies
• Load-Store Queues (LSQ) hold outstanding memory requests

What does this look like in the real world?

• Intel Haswell (2013):
• Issue width of 4
• 14-19 stage pipeline
• OoO execution

• Intel Nehalem (2008)
• 20-24 stage pipeline
• Issue width of 2-4
• OoO execution

• ARM
• V7 has 3 stage pipeline; Cortex V8 has 13
• Cortex V8 has issue width of 2
• OoO execution

• RISC-V
• Ariane and Rocket are In-Order
• 3-6 stage pipelines
• some super scaler

implementations
(BOOM)

What does this mean for us?

• We should have an abstract and parametrized performance model for
instruction scheduling (the order of instructions)

• Try not to place dependent instructions in sequence

• Many times the compiler will help us here, but sometimes it cannot!

Three techniques to optimize for ILP

• Priority topological ordering

• Independent for loops

• Reduction for loops

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

First, consider optimizing
for superscalar

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Label nodes with the maximum
distance to a source

0

0

0

0

1

2

3

4

5

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Break ties in topological
order using this number

Label nodes with the maximum
distance to a source

0

0

0

0

1

2

3

4

5

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Break ties in topological
order using this number

0

0

0

0

1

2

3

4

5

Label nodes with the maximum
distance to a source

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r7 = 2 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move independent
instructions as high
as possible. What about
pipelining?

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r0 = neg(b);
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r0 = neg(b);
r5 = sqrt(r4);
r7 = 2 * a;
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

final

In practice

• A compiler will optimize for your architecture using a performance
model

• Some approaches use a resource model that explicitly encode the
issue-width and pipeline

Use-case

• Loop unrolling

• Reduction loops (we will do on Wednesday)

Using Loop Unrolling to Exploit ILP

• for loops with independent chains of computation

for (int i = 0; i < SIZE; i++) {
SEQ(i);

}

where: SEQ(i) = instr1;
instr2;
...
a[i] = instrN;

and let instr(N) depends on instr(N-1)

loops only write to memory
addressed by the loop variable

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}

Saves one addition and one comparison per loop, but doesn’t help with ILP

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let green highlights indicate
instructions from iteration i.

Let blue highlights indicate
instructions from iteration i + 1.

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i,2);
...
SEQ(i,N); // end iteration for i
SEQ(i+1,1);
SEQ(i+1,2);
...
SEQ(i+1, N); // end iteration for i + 1

}

Let SEQ(i,j) be the jth
instruction of SEQ(i).
Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);
...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);
...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

two instructions can be pipelined, or executed
on a superscalar processor

Using Loop Unrolling to Exploit ILP

• This is what you are doing in part 1 of homework 1

• You are playing the role of a compiler unrolling loops

• Your “compiler” is written in Python. You print out C++ code

• You the code is parameterized by dependency chain and by unroll
factor

Thank you!

• Remember to do the quiz today!

• Get started on homework
• Setting up docker
• part 1

• We will discuss ILP for reduction loops and C++ parallelism in the next
two lectures

