CSE113: Parallel Programming

Feb. 9, 2022
° 1CS
TOpICS. Queue 0 Queue 1
* Finish workstealing
e Shared worklists 0 1 3 4

N

thread O thread 1

Announcements

* Midterm is out!
* You have until next Monday at midnight to do it.
* Do not discuss with your classmates
* Do not google specific questions or ask on online forums
Ask any clarifying questions as a private post on piazza
Late tests will not be accepted
You can ask me or Reese about the midterm, not Tim or Sanya

e Homework 3 is out

* You should have everything you need by end of today
* Due next Friday by midnight

e Grades for HW 1 are released
* You have until next Tuesday to discuss any issues

Today’s Quiz

* Due tomorrow by midnight. Please do it!

Previous quiz

A DOALL Loop must have:

(O Aloop variable that starts at O and is incremented by 1
(O loop iterations that are independent
(O be unrolled and interleaved

(O not access any memory locations

Previous quiz

A parallel schedule for a DOALL loop is:

(O a hint to the OS to schedule the thread executing the loop
(O a time sharing scheme for any shared memory across loop iterations

(O a method to distribute loop iterations to different threads

Previous quiz

Which one of the following is NOT a drawback of a global workstealing parallel schedule

() requires a concurrent data structure
(O contention on shared cache lines

(O contention on a single location with RMWs

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

cannot color initially!

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

Dynamically take the next iteration

thread 1 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

e But what if each task took roughly the same amount of time?

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

cannot color initially!

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

Dynamically take the next iteration

thread 1 0 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

Dynamically take the next iteration

3

thread O

thread 1 0 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

4 5 6 7 SIZE -1
Dynamically take the next iteration
thread 1 0 1 3

finished tasks

't can end up looking a lot like this:

array a
Computation
can easily be
divided into
threads array b

Thread O - Blue
Thread 1 - vellow
Thread 2 - Green
Thread 3 - Orange

array c

Previous quiz

Which of the following is NOT an overhead of the local worklist workstealing parallel schedule (that
we studied in class)

(O initialization of the queues
(O checking a global variable to ensure all work is completed

(O managing concurrent enqueues to the worklists

Previous quiz

Given what we've learned: what role do you believe the compiler should play in parallelizing DOALL
loops?

For example, should it: (1) identify them? (2) parallelize them? (3) pick a parallel schedule?

There is no right or wrong answer here, but it is interesting to think about!

We will revisit this later on in lecture!

Review

DOALL Loops

adds two arrays

for (int i = 0; 1 < SIZE;

a[i] = b[i1] + c[i];

}

adds elements with neighbors

for (int i = 0; 1 < SIZE;

a[i] += a[i+1]

}

i++) {

i++) {

what about a random order?

for (pick 1 randomly)

}

a[i] = b[i1] + c[i];

for (pick 1 randomly)

}

a[i] += a[i+1]

{

{

DOALL Loops

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

DOALL Loops

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; a[i]= a[0]*2;

} }

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

Parallel Schedules

* Consider the following program:

There are 3 arrays:a, b, c.

We want to compute

for (int i = 0; i < SIZE; i++) {
c[1] = a[1] + b[1];

Parallel Schedules

array a
Computation
can easily be +
divided into
threads array b

Thread O - Blue

Thread 1 -
Thread 2 - -

Thread 3 -

array c

Parallel Schedules

array a
Computation
can easily be
divided into
threads array b

Thread O - Blue
Thread 1 - vellow
Thread 2 - Green
Thread 3 - Orange

array c

Parallel Schedules

array a
Computation
can easily be +
divided into
threads array b

Thread O - Blue

Thread 1 -
Thread 2 - -

Thread 3 -

array c

Parallel Schedules

array a
Computation
can easily be
divided into
threads array b

Thread O - Blue
Thread 1 - vellow
Thread 2 - Green
Thread 3 - Orange

array c

Static schedule

* Example, 2 threads/cores, array of size 8

void parallel loop(..., int tid, int num threads)

{

int chunk size = SIZE / NUM_THREADS;

int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
. = // work based on x

O: end = 4 l: end = 8)

}

chunk size = 4

O: start = 0 l: start = 4

thread O thread 1

Static schedule

* Example, 2 threads/cores, array of size 9 ceiling division, this will distribute

uneven work in the last thread to all
other threads

void parallel loop(..., int tid, int num threads)

{
chunk size = 4 int chunk size =

(SIZE+(NUM_THREADS-1))/NUM_THREADS;

O: start = 0 l: start = 4 int start = chunk size * tid;
int end = start + chunk size;
0: end = 4 l: end = 8 for (int x = start; x < end; x++) {

// work based on x

}
}

thread O thread 1

Static schedule

* Example, 2 threads/cores, array of size 9

0 1 2 3 4
chunk size = 5
O: start = 0 l: start
O: end = 5 l1: end
thread O thread 1

out of bounds

void parallel loop(...

{

}

int chunk size =
(SIZE+(NUM THREADS-1))/NUM THREADS;
int start = chunk size * tid;
int end = start + chunk size;
for (int x = start; x < end; x++) {

}

// work based on x

, int tid, int num threads)

Static schedule

* Example, 2 threads/cores, array of size 9

out of bounds

void parallel loop(..., int tid, int num threads)
{
chunk size =5 int chunk size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
O: start = 0 l: start = 5 int start = chunk size * tid;
int end =
0: end = 5 l: end = 10 min(start+chunk size, SIZE)
for (int x = start; x < end; x++) {
// work based on x
}
thread O thread 1

}

Statlc SChEd u ‘e most threads do equal amounts

of work, last thread may do less.

' Which one is better/worse?
* Example, 2 threads/cores, array of size 9 Max slowdown for last thread does all

the extra work?

Max slowdown for ceiling?

void parallel loop(..., int tid, int num threads)
{
chunk size =5 int chunk size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
O: start = 0 l: start = 5 int start = chunk size * tid;
int end =
0: end = 5 l: end = 9 min(start+chunk size, SIZE)
for (int x = start; x < end; x++) {
// work based on x
}
thread O thread 1

}

Global worklist schedule

* We discussed in quiz review

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

atomic_int x(0);
void parallel loop(...) {

}

for (int local x

}

A

local x
local x

// dynamic work

X: 5
0 - local x - 4
l - local x - 3

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Schedule

* DOALL Loops

* Parallel Schedules:
* Static
* Global Worklists
* Local Worklists

Work stealing - local worklists

* More difficult to implement: typically requires concurrent data-
structures

* low contention on local data-structures

* potentially better cache locality

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

0 1 3 4

N

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

1 4

N

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

steal!

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

* How to implement:

void foo() {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

Work stealing - local worklists

* How to implement:

void foo() { void parallel loop(..., int tid) {
—for—(x—=0;—=x<S5IZE;—=x+H)—< for (x = 0; x < SIZE; x++) {
H—dynamie—work—based—on—=x% // dynamic work based on x
—r }
}
}

Make a new function, taking any variables used in loop body as args. Additionally take in a thread id

Work stealing - local worklists

* How to implement:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {
void foo() {
.« for (x = 0; x < SIZE; x++) {
—for(x—=03—% < SIZE;—=x+H)—< // dynamic work based on x
H—dynramie—work—based—on—=x% }
—r }

Make a global array of concurrent queues

Work stealing - local worklists

* How to implement:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {
void foo() {
.« for (x = 0; x < SIZE; x++) {
—for(x—=03—% < SIZE;—=x+H)—< // dynamic work based on x
H—dynramie—work—based—on—=x% }
—r }

What type of queues?

Make a global array of concurrent queues

Work stealing - local worklists

* How to implement:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {

void foo() {
for (x = 0; x < SIZE; x++) {

= // dynamic work based on x
ara dyn amic—work basedon—=x }
s }

What type of queues?
We’re going to use InputOutput Queues!
Make a global array of concurrent queues

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

0 1 2 3 ,
input phase

— T,

Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes
0 1 2 3 _
input phase
/ \
1 2 3 Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

1 2 3

\

input phase

2 3 Input/output Queues

0
/
1
\ / output phase

thread O thread 1

Work stealing - local worklists

concurrent queues cg[NUM THREADS];
void foo() {

First we need to initialize the queues

Work stealing - local worklists

concurrent queues cg[NUM THREADS];

void foo() { void parallel eng(..., int tid, int num threads)
e o o {

// Spawn threads to initialize

. . .. int chunk size = SIZE / NUM_THREADS;
// join initializing threads

int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
cq[tid].enq(x);

})

}

Just like the static schedule, except we are
enqueuing

Work stealing - local worklists

.
concurrent_queues cq[NUM THREADS]; Make sure to account for boundary conditions!

void foo() { void parallel eng(..., int tid, int num threads)
e o o {

// Spawn threads to initialize

. . .. int chunk size = SIZE / NUM_THREADS;
// join initializing threads

int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
cq[tid].enq(x);

})

}

Just like the static schedule, except we are
enqueuing

Work stealing - local worklists

* How to implement in a compiler:

NUM THREADS = 2;

SIZE = 4;
CHUNK = 2;
X 0 1 2 3

tid 0 0 1 1

Make sure to account for boundary conditions!

void parallel eng(..., int tid, int num threads)

{

int chunk size = SIZE / NUM_THREADS;
int start = chunk size * tid;
int end = start + chunk size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);
}
}

Just like the static schedule, except we are
enqueuing

Work stealing - local worklists

concurrent_queues Cq[NUM_THREADS]; void parallel loop(..., int tid, int num threads) ({
void fOO() { for (x = 0; x < SIZE; x++) {

o // dynamic work based on x

// initialize queues }

// join threads }

// launch loop function

How do we modify the parallel loop?

Work stealing - local worklists

concurrent_queues Cq[NUM_THREADS] ; void parallel loop(..., int tid, int num threads) ({

void foo() { int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// initialize queues {
// join threads // dynamic work based on task

}

}
// launch loop function

loop until the queue is empty

Work stealing - local worklists

concurrent_queues Cq[NUM_THREADS] ; void parallel loop(..., int tid, int num threads) ({

void foo() { int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// initialize queues {
// join threads // dynamic work based on task

}

}
// launch loop function

loop until the queue is empty
Are we finished?

Work stealing - local worklists

concurrent queues cq[NUM THREADS]; atomic_int finished threads(0);
. - - void parallel loop(..., int tid, int num threads) {
void foo() { -
oo int task = 0;
// initialize queues for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// join threads {

// dynamic work based on task
}

// launch loop function atomic_ fetch add(&finished threads,l);

}

Track how many threads are finished

Work stealing - local worklists

concurrent queues cg[NUM THREADS]; atomic_int finished threads(0);
void fOO() { void parallel loop(..., int tid, int num threads) ({
oo int task = 0;
// initialize queues for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// join threads { ,
// dynamic work based on task
}
// launch loop function atomic_fetch add(&finished threads,l);
... while (finished threads.load() != num threads) ({
; }

While there are threads that are still working

Work stealing - local worklists

concurrent queues cg[NUM THREADS];
void foo() {

// initialize queues
// join threads

// launch loop function

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task

}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();

pick a random target and steal a task

concurrent queues cg[NUM THREADS];
void foo() {

Work stealing - local worklists

// initialize queues
// join threads

// launch loop function
// join loop threads

}

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}
}

concurrent queues cg[NUM THREADS];

Work stealing - local worklists

void foo() {

// initialize queues

// join threads

// launch loop function
// join loop threads

join the threads

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

}

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}
}

Work stealing - local worklists

|IOQueue O
0 1
thread O

|IOQueue 1
3 4
thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

|IOQueue O
0 1
thread O

|IOQueue 1
3 4
thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

|IOQueue O

|IOQueue 1

thread O

thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

atomic_int finished threads(0);

void parallel loop(..., int tid, int num threads
I0Queue 0 I0Queue 1 P —1ooP (- -+ ’ -) A

int task = 0;

for (x = cq[tid].deq(); x !'= -1; KIEHCOICEINEEEN)
1 4 {

// dynamic work based on task

}

atomic_fetch add(&finished threads,1);

0 while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

thread O - // perform task
}
}

Work stealing - local worklists

|IOQueue O

|IOQueue 1

thread O

thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

atomic_int finished threads(0);

void parallel loop(..., int tid, int num threads
I0Queue 0 I0Queue 1 P —1ooP (- -+ ’ -) A
int task = 0;
1 for (x = cq[tid].deq(); x !'= -1; KIEHCOICEINEEEN)
{
// dynamic work based on task

}

atomic_fetch add(&finished threads,1);

0 while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

thread O - // perform task
}
}

Work stealing - local worklists

finished threads: 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

|OQueue O |OQueue 1

int task = 0;

1 for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task

}

0 while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
thread O - // perform task
}

}

}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task
}

atomic_fetch add(&finished threads,1);
while (finished threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int B@EGEEE // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

thread O

|IOQueue 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())

{

// dynamic work based on task

}

atomic_fetch add(&finished threads,1);

while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from

int task = cq[target].deq();
if (task != -1) {

// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

finished!

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task
}

atomic_fetch add(&finished threads,1);
while (finished threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

|IOQueue 1

thread O

thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Practical Parallel DOALL Loops

e Languages have various features to enable easy and flexible parallel
DOALL Loops

C++

std::vector<std::string> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

C++

std: :vector<std::string> foo; Iterateble-object
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

C++

std::vector<std::string> foo; Higher order function
std::for each(std::execution::par unseq, for iterating over object
foo.begin(), foo.end(),
[1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

C++

std::vector<std::string> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[1 (auto& item) {
//do stuff with item
})i

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

Execution policy types

options:

seq - sequential
par - parallel

par_ unseq - also parallel

more in a few slides!

C++

_ Iterator range
std: :vector<std::string> foo;

std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[1 (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

C++

std: :vector<std::string> foo; Functor or Lambda:

std::for each(std::execution::par unseq, Execute the function
foo.begin(), foo.end(), with each item in the iterated

[1 (auto& item) { range
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

C++

_ Back to execution policies
std: :vector<std::string> foo;

std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[1] (auto& item) {

options:
//do stuff with item

seq - sequential
})i par - parallel
par unseq - also parallel

Difference between these
two?

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

C++

std::vector<std::string> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[1] (auto& item) {
//do stuff with item

})s

From: https://stackoverflow.com/questions/36246300/parallel-loops-in-c

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

C++

std::vector<std::int> foo;
std::for each(std::execution::par unseq,
foo.begin(), foo.end(),
[1] (auto& item) {
tmp += 1.0;
tmp += 2.0;
tmp += 3.0

4

})s

what would we like to do here?

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

C++

std::vector<std::int> foo;

std::for each(std::execution::par unseq,

foo.begin(), foo.end(),
[](auto& item) {

tmp += 1.0;
tmp += 2.0;
tmp += 3.0;

})s

what would we like to do here?

tmp0 += 1.0; // for itemO
tmpl += 1.0; // for iteml
tmp2 += 1.0; // for item2

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

Just like in HW 1!

par_unseq requires that instructions in loops can interleaved!

C++

std::vector<std::int> foo;
std::for each(std::execution::par,
foo.begin(), foo.end(),
[1] (auto& item) {
tyler account += item

})s

global variable account, now we’d have a data race!

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

C++

std::vector<std::int> foo;
std: :mutex m;
std::for each(std::execution::par,
foo.begin(), foo.end(),
[1] (auto& item) {
m.lock();
tyler account += item
m.unlock();

})s

We can fix it with mutexes

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

C++

std::vector<std::int> foo;
std: :mutex m;

std::for each(std::execution::par,

foo.begin(),

foo.end(),

[1] (auto& item) {

m.lock();

tyler account += item

m.unlock();

})s

But now we can’t interleave

m.lock(); // for
m.lock(); // for
tyler account +=
tyler account +=

deadlock!

item O
item 1
itemO;
iteml;

Back to execution policies

options:

seq - sequential
par - parallel

par unseq - also parallel

par_unseq requires independent
loop iterations, but also allows
the ability to interleave.

We need to use std::execution: :par
if iterations cannot be interleaved (e.g. if they use
mutexes)

C++ shortcomings

* Have to modify code
* No control over the parallel schedule

OpenMP

* Pragma based extension to C/C++/Fortran

for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}

OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}
// add -fopenmp to compile line

OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
) cf1] = a[1] + b[1]; launches threads to perform

_ _ loop in parallel. Joins threads
// add -fopenmp to compile line afterward

OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}
// add -fopenmp to compile line

if its so easy, why don’t compilers just do this for us automatically?

OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for

for (int i = 0; i < SIZE; i++) {
c[i] = a[1] + b[1];

}

// add -fopenmp to compile line

if its so easy, why don’t compilers just do this for us automatically?

Performance considerations:
when is parallelism going to provide
a speedup vs. slowdown?

Correctness considerations:

very difficult to determine if loop
is safe to do in parallel

OpenMP

* Pragma based extension to C/C++/Fortran

What about irregular loops?
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}

OpenMP

* Pragma based extension to C/C++/Fortran

What about irregular loops?
#pragma omp parallel for schedule(dynamic)
for (x = 0; x < SIZE; x++) { Schedule keyword
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}

OpenMP

* Pragma based extension to C/C++/Fortran

What about irregular loops?
#pragma omp parallel for schedule(dynamic)

for (x = 0; x < SIZE; xt++) { Schedule keyword
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + ¢c[x,V]; different types of schedules
}

}

OpenMP

e Schedules:
* From http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule (static, chunk-size)

schedule(static):

kkhkkkhkkhkkkkhkkkkkkkk*k
kkhkkkkkkkhkkkkkkkk*k
kkkkkkkkkkkkkkk*k

khkkkhkkkkhkkhkkkkkkkk*k

schedule(static, 4):

%k %% %k %% * k%% * %k %%
* %k %% * k%% * k%% * k%%
* %k %% * k%% * k%% * k%%

k%% * k%% * k%% * k%%

schedule(static, 8):

*kkkkkk*k*%k kkkkkkk%k
*kkkkkk*k*%x kkkkkkk*%k
kkkkkkk*k kkhkkkkk*kk

kkkkkkk*k kkkkkkkk

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(dynamic, chunk-size)

schedule(dynamic, 1):

* * * * * * % * * * * % * %

schedule(dynamic, 4):
k%% * %k %k % *kkk*
* k%% * k%% *k k% * k%% * %k % %
%k k% * %k %k % * %k %k % * %k %k % %k %k %

kk% k%% k%%

schedule(dynamic, 8):

kkhkkkkkk*k kkhkkkkkk*k
kkkkkkk*k kkkkkkk*k
kkkkkkk% kkkkkkk*k kkkkkkk*%

kkkkkkk*k

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(guided)

schedule(guided):

kkhkkkkkkk*k *
kkkkkkkkkkk*k kkkkkk%k * %k %
kkkkkkk

kkhkkkkhkkkkhkkkkkkkk*k *kk*k*k%k * %

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(runtime)

You set the schedule in your code!

void omp set schedule (omp sched t kind, int chunk_size) ;

schedule(auto)

You let the system/compiler decide

from: http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

Rest of module

* We will look at general concurrent sets:
e concurrent add and remove methods
* start off with locks
* move to coarse-grained locks
e end with lock-free

* May take 2 lectures, that’s okay. We have a spare slot in the schedule

See you on Friday

* | hope to be feeling better by then. I'll take another test Friday
morning and let you know.

* Work on midterm!
* Ask on piazza if you have questions or comments

* Homework 3 is out and you have everything you need to do it!

* Do the quiz!

