CSE113: Parallel Programming

Feb. 7, 2022

* Topics: Workstealing
* DOALL loops

Queue O Queue 1

* Parallel Schedules: 0 1 3 4

* Static
* global worklist
* |ocal worklist

thread O thread 1

Announcements

 Midterm is out!
* You have until next Monday at midnight to do it.
e Do not discuss with your classmates
* Do not google specific questions or ask on online forums
Ask any clarifying questions as a private post on piazza
Late tests will not be accepted
You can ask me or Reese about the midterm, not Tim or Sanya

* Homework 3 is out
* You have what you need for part 1
 We’ll be doing the material for part 2 today
* You can share results starting in 1 week

Announcements

* Grades for HW 1 will be released after class today

* Halfway through the quarter!

Today’s Quiz

* Due tomorrow by midnight. Please do it!

Previous quiz

Input/output queues use atomic increments and decrements to protect against threads that are
trying to concurrently enqueue and dequeue

O True

(O False

Previous quiz

A circular buffer is:

(O A special type of memory that is organized in circular pattersTrue
(O Part of the C++ standard library

(O a useful data representation for fixed-length queues

Previous quiz

The performance of an application using a producer-consumer queue depends most on:

(O The rate at which the producer enqueues elements
(O The rate at which the consumer dequeues elements

(O if the queue is implemented using a mutex or not

Previous quiz

* Performance modeling:

e Get timing for “perfect producer” and “perfect consumer”
* j.e. time everything but delays from concurrent queue

* Call these PP and PC
* The fastest your application can possibly go is max(PP, PC).

 What is the relation between producer and consumer?
* If the consumer goes much slower than the producer?
* If the producer goes much slower than the consumer?

Review

Producer Consumer Queues

* 1 enq, 1deq
* enq’er cannot deq
* deqg’er cannot enq

* Example: printf:
e your program equeues values to print
* the terminal process dequeues values and prints them

Synchronous Producer Consumer Queues

Producer Thread

eng(7);
enqg(8);

Consumer Thread

flag

deq();
deq();

class SyncQueue {
private:
atomic_int box;
atomic_bool flag;

public:

void
//
//

}

void
//
//
//

}
}

eng (int x) {
put value 1n box
set flag

deqg () {
walt for flag to be set

read from the box
reset flag

Async Producer Consumer Queues

e Start with a fixed size array

(siz-2) (SIZE-1)

indexes will
(SIZE -3) 0

1 circulate in
order and
wrap around

we will assume modular
arithmetic:

if x = (SIZE - 1) then
x+1==0;

conceptually it is a circle

Producer Consumer Queues

e Start with a fixed size array

(SizE -2) (SIZE-1) indexes will
circulate in
order and
wrap around

(SIZE -3)

Two variables to keep track of
where to deq and enq;:

head and tail:

eng to the head, deq from the
tail

valid items in the
gueue

conceptually it is a circle

Producer Consumer Queues

e Start with a fixed size array

(siz-2) (SIZE-1)

(SIZE -3)

Two variables to keep track of
where to deq and enq;:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

conceptually it is a circle

tail

indexes will
circulate in
order and
wrap around

Producer Consumer Queues

e Start with a fixed size array o6 1)
- indexes will

circulate in

order and

wrap around

(SIZE -2)
(SIZE -3)

Two variables to keep track of
where to deq and enq;:

head and tail

Empty queue is when

head == tail
Full gueue is when but then
head == tail?

how to tell
full queue from
conceptually it is a circle empty?

Producer Consumer Queues

e Start with a fixed size array

(size-2) (S1ZE-1) indexes will
(SI2E -3) 0 circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq;:

head and tail

Empty queue is when
head == tail

Full queue is when
head + 1 == tail

wasting one
conceptually it is a circle location, but its okay...

(SIZE -3)

(SIZE -2)

(SIZE -1)

valid items in the
gueue

Other questions:

Do these need to be atomic RMWs?

class ProdConsQueue {
private:
atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void eng(int x) {
// walit for their to be room
// store value at head
// 1increment head

}

int deg() {
// wait while queue 1is empty
// get value at tail
// increment tail

On to new material!

Schedule

* Workstealing
* DOALL Loops

 Parallel Schedules
 Static schedule
* Global worklist
* Local worklists

Schedule

* Workstealing
* DOALL Loops

 Parallel Schedules
 Static schedule
* Global worklist
* Local worklists

adds two arrays

for (int i = 0;
a[i] = b[1] +

i < SIZE:
cl[i];

adds elements with neighbors

for (int i = 0;
a[i] += a[i+1]

i < SIZE;

i++)

i++)

{

{

are they the same if you traverse them backwards?

adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (int i = SIZE-1; i >= 0; 1i--) {
a[i] = b[1] + c[1]; a[i] = b[1] + c[1];

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {

for (int i = 0; 1 < SIZE; i++) { a[i] += a[i+1]

a[i] += a[i+1]

are they the same if you traverse them backwards?

adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (int i = SIZE-1; i >= 0; 1i--) {
a[i] = b[1] + c[1]; a[i] = b[1] + c[1];

adds elements with neighbors

for (int i = SIZE-1; i >= 0; i--) {

for (int i = 0; 1 < SIZE; i++) { a[i] += a[i+1]

a[i] += a[i+1]

Nol!

what about a random order?
adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (pick i1 randomly) {
a[i] = b[i] + c[1]; a[i] = b[1i] + c[1];

} }

adds elements with neighbors

for (pick 1 randomly) ({

for (int 1 = 0; 1 < SIZE; i++) { a[i] += a[i+1]
a[i] += a[i+1] }
}

what about a random order?
adds two arrays

for (int i = 0; 1 < SIZE; i++) { for (pick i1 randomly) {
a[i] = b[i] + c[1]; a[i] = b[1i] + c[1];

} }

adds elements with neighbors

for (pick 1 randomly) ({

for (int i = 0; 1 < SIZE; i++) { a[i] += a[i+1]

a[i] += a[i+1]

) }

Nol

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[1];

}

These are DOALL loops:
* Loop iterations are independent
* You can do them in ANY order and get the same results

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[1];

}

These are DOALL loops:
* Loop iterations are independent
* You can do them in ANY order and get the same results

* Most importantly: you can do the iterations in parallel!
* Assign each thread a set of indices to compute

DOALL Loops

* Given a nest of For loops, can we make the outer-most loop parallel?
e Safely
* Efficiently

DOALL Loops

* We will consider a special type of for loop, common in scientific
applications:

e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1

for (int i = 0; i < diml; i++) {
for (int j = 0; j < dim3; j++) {
for (int k = 0; k < dim2; k++) { matrix multiplication
a[i][j]1 += b[il[k] * c[k][j]; example
}
}
}

DOALL Loops

* We will consider a special type of for loop, common in scientific
applications:

e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1

for (int 1 = 2; i < 100; i+=3) {
a[i] = c[1 + 128];

DOALL Loops

* We will consider a special type of for loop, common in scientific
applications:

e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1

for (int i = 2; i < 100; i+=3) { Substigute_: ,
= * +
a[i] = c[i + 128]; 1]

DOALL Loops

* We will consider a special type of for loop, common in scientific
applications:

e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1

for (int j = 0; j < 33; j++) { s.ub_stitute.:
a[3*j + 2] = c[3*] + 2 + 128]; L=yl

DOALL Loops

* We will consider a special type of for loop, common in scientific
applications:

e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1

for (int i = 2; 1 < 100; i+=3) { for (int j = 0; jJ < 33; j+=1) {
a[i] = c[i + 128]; a[3*j+2] = c[(3*+2) + 128];
} }

DOALL Loops

* Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?

» Safely
 efficiently

* Criteria: every iteration of the outer-most loop must be independent
* The loop can execute in any order, and produce the same result

Safety Criteria

e How do we check this?

* If the property doesn’t hold then there exists 2 iterations, such that if they are
re-ordered, it causes different outcomes for the loop.

 Write-Write conflicts: two distinct iterations write different values to the
same location

e Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable
Computation to store in the memory location

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
i, = 1,

Check:

index(1i,) != index(iy)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (i = 0; 1 < size; 1i++) {
a[index(i)] = loop(i);
}
?
Write-write conflicts: Why: .
Because if
for two distinct iteration variables: index(1ly) == 1index(1y)
io1= i then:
X * y . . .
Check: al[index(i,)] will equal
index(i,) != index(i,) either loop(i,) orloop(iy)

depending on the order

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

}

Read-write conflicts:

for two distinct iteration variables:

i, != i,

Check:

write_ index(i,) != read_index(iy)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

Why?
Read-write conflicts:

if i, iteration happens first, then

for two distinct iteration variables: iteration i, reads an updated value.
i, != i,
Check: if 1, happens first, then it reads the

write_index(i,) != read_index(i,) original value

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; a[i]= a[0]*2;

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; a[i]= a[0]*2;

} }

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

Examples:

for (1 = 0; 1 < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; afi]= a[0]1*2;

} }

for (i = 0; i < 128; i++) { for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2; a[i%64]= a[i+64]1*2;

} }

Schedule

* DOALL Loops

* Parallel Schedules:
 Static
* Global Worklists
* Local Worklists

Parallel Schedules

* Consider the following program:

There are 3 arrays:a, b, c.

We want to compute

for (int i = 0; i < SIZE; i++) {
c[i1] = a[1] + b[1];

Is this a DOALL loop?

Parallel Schedules

* Consider the following program:

There are 3 arrays:a, b, c.

We want to compute

for (int i = 0; i < SIZE; i++) {
c[i1] = a[1] + b[1];

Is this a DOALL loop? How should we parallelize it?

Parallel Schedules

array a

array b

array c

Parallel Schedules

array a
Computation
can easily be +
divided into
threads array b

Thread O - Blue

Thread 1 -
Thread 2 - -

Thread 3 -

array c

Parallel Schedules

array a
Computation
can easily be
divided into
threads array b

Thread O - Blue
Thread 1 - vellow
Thread 2 - Green
Thread 3 - Orange

array c

Parallel Schedules

array a
Computation
can easily be +
divided into
threads array b

Thread O - Blue

Thread 1 -
Thread 2 - -

Thread 3 -

array c

Parallel Schedules

array a
Computation
can easily be
divided into
threads array b

Thread O - Blue
Thread 1 - vellow
Thread 2 - Green
Thread 3 - Orange

array c

Parallel Schedules

 Which one is more efficient?

Parallel Schedules

 Which one is more efficient?

* These are called Parallel Schedules for DOALL Loops

* We will discuss several of them today.

Schedule

* DOALL Loops

* Parallel Schedules:
* Static
* Global Worklists
* Local Worklists

Static schedule

* Works well when loop iterations take similar amounts of time

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

0 1 2 3 4 5 6 7 SIZE -1

Static schedule

* Works well when loop iterations take similar amounts of time

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

, say SIZE / NUM_THREADS = 4

0 1 2 3 4 5 6 7 SIZE -1

Static schedule

* Works well when loop iterations take similar amounts of time

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

, say SIZE / NUM_THREADS = 4

Thread O Thread 1 Thread N

0 1 2 3 4 5 6 7 SIZE -1

Static schedule

* Works well when loop iterations take similar amounts of time

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Static schedule

* Works well when loop iterations take similar amounts of time

void foo() { void parallel loop(..., int tid, int num threads)
{
) = g ! for (int x = 0; x < SIZE; x++) {
/7/—Each—itteration—takes roughly // work based on x
—//—egqual—time }
—3 }
}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Static schedule

* Works well when loop iterations take similar amounts of time

void foo() { void parallel loop(..., int tid, int num threads)
{
R ' int chunk size = SIZE / NUM_THREADS;
//—FEach—tteration—takes feughiy‘ for (int x = 0; x < SIZE; x++) {
—/—egual—time // work based on x
}
} }

determine chunk size in new function

Static schedule

* Works well when loop iterations take similar amounts of time

void foo() { void parallel loop(..., int tid, int num threads)
{
= Uy ’ int chunk size = SIZE / NUM_THREADS;
—//—Fach—iteration—takes roughly int start = chunk_size * tid;
[/ equal—time int end = start + chunk size;
for (int x = start; x < end; x++) {
—r // work based on x
c e }
} }

Set new loop bounds

Static schedule

* Works well when loop iterations take similar amounts of time

void parallel loop(..., int tid, int num threads)
void foo() { {
for (int t = 0; t < NUM THREADS; t++) ({ int chunk size = SIZE / NUM THREADS;
spawn(parallel loop(..., t, NUM THREADS)) int start = chunk size * tid;
} int end = start + chunk size;
join(); for (int x = start; x < end; x++) {
.. // work based on x
} }
}

You will need to adapt the thread spawn, join
to C++

Spawn threads

Static schedule

* Example, 2 threads/cores, array of size 8

void parallel loop(..., int tid, int num threads)

{

: _ int chunk size = SIZE / NUM_THREADS;
chunk size 4 int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
0: end = 2 1: end = ? }// work based on x

}

O: start = ? l: start

I
)

thread O thread 1

Static schedule

* Example, 2 threads/cores, array of size 8

void parallel loop(..., int tid, int num threads)

{

int chunk size = SIZE / NUM_THREADS;

int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
. = // work based on x

O: end = 4 l: end = 8)

}

chunk size = 4

O: start = 0 l: start = 4

thread O thread 1

End example

Static schedule

* Example, 2 threads/cores, array of size 9

void parallel loop(..., int tid, int num threads)

chunk size = ? {

int chunk size = SIZE / NUM THREADS;

int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
// work based on x

}

O: start = ? l: start

I
0

0: end = ? l: end = ?

thread O thread 1 '

Static schedule

* Example, 2 threads/cores, array of size 9

void parallel loop(..., int tid, int num threads)
chunk size = 4 {
int chunk size = SIZE / NUM THREADS;
O: start = 0 l: start = 4 int start = chunk size * tid;
int end = start + chunk size;
0: end = 4 l: end = 8 for (int x = start; x < end; x++) {

// work based on x

}

thread O thread 1 '

Static schedule

* Example, 2 threads/cores, array of size 9

chunk size = 4

O: start = 0 l: start = 4
O: end = 4 l: end = 8

thread O thread 1

void parallel loop(..

{

., int tid, int num threads)

int chunk size = SIZE / NUM THREADS;
int start = chunk size * tid;
int end = start + chunk size;
if (tid == num threads - 1) {

end = SIZE;
}

for (int x = start; x < end; x++) {

// work based on x

}
}

Static schedule

* Example, 2 threads/cores, array of size 9

0 1 2 3 4
chunk size = 4
O: start = 0 l: start
O: end = 4 l1: end
thread O thread 1

last thread gets more work

void parallel loop(..., int tid, int num threads)

{

}

int chunk size = SIZE / NUM THREADS;
int start = chunk size * tid;
int end = start + chunk size;
if (tid == num threads - 1) {

}

end = SIZE;

for (int x = start; x < end; x++) {

}

// work based on x

Static schedule

* Example, 2 threads/cores, array of size 9

0 1 2 3 4 5
chunk size = 4
O: start = 0 l: start =
0: end = 4 l1: end = 9
thread O thread 1

last thread gets more work

What is the worst case?

void parallel loop(..., int tid, int num threads)

{

}

int chunk size = SIZE / NUM THREADS;
int start = chunk size * tid;
int end = start + chunk size;
if (tid == num threads - 1) {

}

end = SIZE;

for (int x = start; x < end; x++) {

}

// work based on x

End example

Static schedule

* Example, 2 threads/cores, array of size 9 ceiling division, this will distribute

uneven work in the last thread to all
other threads

void parallel loop(..., int tid, int num threads)

{
chunk size = 4 int chunk size =

(SIZE+(NUM_THREADS-1))/NUM_THREADS;

O: start = 0 l: start = 4 int start = chunk size * tid;
int end = start + chunk size;
0: end = 4 l: end = 8 for (int x = start; x < end; x++) {

// work based on x

}
}

thread O thread 1

Static schedule

* Example, 2 threads/cores, array of size 9

0 1 2 3 4
chunk size = 5
O: start = 0 l: start
O: end = 5 l1: end
thread O thread 1

out of bounds

void parallel loop(...

{

}

int chunk size =
(SIZE+(NUM THREADS-1))/NUM THREADS;
int start = chunk size * tid;
int end = start + chunk size;
for (int x = start; x < end; x++) {

}

// work based on x

, int tid, int num threads)

Static schedule

* Example, 2 threads/cores, array of size 9

out of bounds

void parallel loop(..., int tid, int num threads)
{
chunk size =5 int chunk size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
O: start = 0 l: start = 5 int start = chunk size * tid;
int end =
0: end = 5 l: end = 10 min(start+chunk size, SIZE)
for (int x = start; x < end; x++) {
// work based on x
}
thread O thread 1

}

Statlc SChEd u ‘e most threads do equal amounts

of work, last thread may do less.

' Which one is better/worse?
* Example, 2 threads/cores, array of size 9 Max slowdown for last thread does all

the extra work?

Max slowdown for ceiling?

void parallel loop(..., int tid, int num threads)
{
chunk size =5 int chunk size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
O: start = 0 l: start = 5 int start = chunk size * tid;
int end =
0: end = 5 l: end = 9 min(start+chunk size, SIZE)
for (int x = start; x < end; x++) {
// work based on x
}
thread O thread 1

}

End example

Schedule

* DOALL Loops

* Parallel Schedules:
* Static
* Global Worklists
* Local Worklists

Irregular parallelism in loops

e Tasks are not balanced

* Appears in lots of emerging workloads

Irregular parallelism in loops

e Tasks are not balanced

* Appears in lots of emerging workloads

social network analytics where threads are parallel across users

() (EFollowing)

Tyler Sorensen
Barack Obama &

Computer Science Researche

rcher
Assistant Professor at UC Santa Cruz in 2020 Dad. husband. President. citizen.

332

Irregular parallelism in loops

e Tasks are not balanced

* Appears in lots of emerging workloads

VGG-19 Filter Pruning (CIFAR-10)

100 4500
IS Evﬁ,
= —*— Condensa Compression Act. B
R 80 ——
< Throughput (fps) L 3500
g
é o - 3000
(O]
. 2 — 2500
sparse DNNs where a large percentage of weights are dropped .
o 40 - 2000
'_
N — 1500
IS 20 —
— 1000
0 T T T o [~ 500
0.0 0.2 0.4 0.6 0.8 1.0

Sparsity Ratio
From: https://arxiv.org/pdf/1911.02497.pdf

Throughput (fps)

Irregular parallelism in loops

* Independent iterations have different amount of work to compute

* Threads with longer tasks take longer to compute.

* Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) { irregular (or unbalanced) parallelism:
for (y = x; y < SIZE; y++) { each x iteration performs different
a[x,y] = b[x,y] + ¢c[x,V]; amount of work.

}
}

Irregular parallelism in loops

e Calculate imbalance cost if x is chunked:
* Thread 1 takes iterations O - SIZE/2
* Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,yl = b[x,y] + c[x,¥];
}
}

Irregular parallelism in loops

Calculate how much total work:
e Calculate imbalance cost if x is chunked: o

* Thread 1 takes iterations O - SIZE/2 total work = Z n
* Thread 2 takes iterations SIZE/2 - SIZE n=0

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}

Irregular parallelism in loops

Calculate how much total work:
e Calculate imbalance cost if x is chunked: o

* Thread 1 takes iterations O - SIZE/2 total work = z n
* Thread 2 takes iterations SIZE/2 - SIZE n=0

Calculate work done by first thread:

for (x = 0; x < SIZE; x++) { SIZE /2
for (y = x; y < SIZE; y++) { t1_work = z n
a[XIY] = b[XIY] + C[XIY]; n=0

}

}

Irregular parallelism in loops

Calculate how much total work:
e Calculate imbalance cost if x is chunked:

* Thread 1 takes iterations O - SIZE/2 total work= Y n
* Thread 2 takes iterations SIZE/2 - SIZE n=0

Calculate work done by first thread:

for (x = 0; x < SIZE; x++) { SIZE /2
for (y = x; y < SIZE; y++) { tl_work = Z n
a[XIY] = b[XIY] + C[XIY]; n=0
}
} Calculate work work done by second thread:

t2_work = total_work - t1_work

Irregular parallelism in loops

Example: SIZE = 64

total_work = 2016
t2_work = 496
tl work = 1520

t1 does ~3x more work than t2

Only provides ~1.3x speedup

Potential solution:
Have T1 do only % of the iterations

Gives a better speedup of 1.77x

Not a feasible solution because often times load
imbalance is not given by a static equation on loop
bounds!

Calculate how much total work:

n=0

Calculate work done by first thread:

SIZE]2

t1l work = Z n

n=0
Calculate work work done by second thread:

t2_work = total_work - t1_work

Work stealing

* Tasks are dynamically assigned to threads.

Work stealing - global implicit worklist

* Pros
e Simple to implement

* Cons:
* High contention on global counter
* Potentially bad memory locality.

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

cannot color initially!

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

Dynamically take the next iteration

thread 1 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

End example

Work stealing - global implicit worklist

* How to implement

void foo() {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

Work stealing - global implicit worklist

* How to implement

void fOO() { void parallel loop(...) {
tt for (x = 0; x < SIZE; x++) {
for(x—=0—=x < SIZE;—=xt++)— // dynamic work based on x
H—dynamie—work—based—on—=x%
77— ayh }
—3 }

Replicate code in a new function. Pass all needed variables as arguments.

Work stealing - global implicit worklist

* How to implement

atomic_int x(0);

void foo() { void parallel loop(...) {
—for(x—="0;—% < SFFE;—=x+)—¥ for (x = 0; x < SIZE; x++) {
/7 3 . ' // dynamic work based on x
~—dynamic—work—basedon—=x }
) }
}

move loop variable to be a global atomic variable

Work stealing - global implicit worklist

* How to implement

atomic_int x(0);

void foo() { void parallel loop(...) {
—for—(x—=0;—x < SIZE;—=x+t)¢ for (int local x = 27
4 4
77 den .] i local x < SIZE;
e A local x = ?2?) {
.. // dynamic work based on x

} V)

change loop bounds in new function to use a local variable using global variable.

Work stealing - global implicit worklist

* How to implement

atomic_int x(0);

void foo() { void parallel loop(..

for (int local x

[—dynamic—work based on—x tocal x =
7y local x =
// dynamic work
}
} }

change loop bounds in new function to use a local variable using global variable.

These must be
atomic updates!

<) o

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Work stealing - global implicit worklist

* How to implement

atomic_int x(0);

void foo() { void parallel loop(...) {
for (t = 0; x < THREADS; t++) { for (int local x = atomic_ fetch add(&x,1);
local x < SIZE;
spawn(parallel_loop) ’ local x = atomic_ fetch add(&x,1l)) {
}
joj_n() ; // dynamic work based on x

Spawn threads in original function and join them afterwards You will have to change to C++ syntax for the homework!

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

0 1 3 4 SIZE -1
atomic_int x(0);
for (int local x
thread O thread 1

x: 0
0 - local x - UNDEF
1l - local x - UNDEF

void parallel loop(...) {

}
}

local x
local x

A

// dynamic work

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

atomic_int x(0);
void parallel loop(...) {

}

for (int local x

}

local x
local x

A

// dynamic work

X: 2
0 - local x - 0
l - local x -1

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

atomic_int x(0);
void parallel loop(...) {

}

for (int local x

}

local x
local x

A

// dynamic work

X: 2
0 - local x - 0
l - local x -1

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

X: 2
0 - local x - 0
l - local x -1

void parallel loop(...) {

local x
local x

3 4 SIZE -1
atomic_int x(0);
for (int local x
thread 1

}

}

<

atomic_fetch add(&x,1);
SIZE;
atomic_ fetch add(&x,1)) {

// dynamic work based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

xX: 3
0 - local x - 0
3 4 SIZE -1 l - local x - 2
atomic_int x(0);
void parallel loop(...) {
for (int local x = atomic_fetch add(&x,1);
local _x < SIZE;
local x = atomic_ fetch add(&x,1l)) {
thread 1 // dynamic work based on x

}
}

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

x: 3
0 - local x - 0
l - local x - 2

void parallel loop(...) {

A

local x
local x

3 4 SIZE -1
atomic_int x(0);
2 for (int local x
thread 1

}

}

// dynamic work

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

xX: 3
0 - local x - 0
3 4 SIZE -1 l - local x - 2
atomic_int x(0);
void parallel loop(...) {
for (int local x = atomic_fetch add(&x,1);
local _x < SIZE;
local x = atomic_ fetch add(&x,1l)) {
thread 1 // dynamic work based on x

}
}

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

x: 4
0 - local x - 0
l - local x - 3

void parallel loop(...) {

local x
local x

3 4 SIZE -1
atomic_int x(0);
for (int local x
thread 1

}

}

<

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

// dynamic work based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

x: 4
0 - local x - 0
l - local x - 3

void parallel loop(...) {

A

local x
local x

4 SIZE -1
atomic_int x(0);
3 for (int local x
thread 1

}

}

// dynamic work

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

x: 4
0 - local x - 0
l - local x - 3

void parallel loop(...) {

local x
local x

4 SIZE -1
atomic_int x(0);
3 for (int local x
thread 1

}

}

<

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

// dynamic work based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

X: 5
0 - local x - 4
l - local x - 3

void parallel loop(...) {

local x
local x

4 SIZE -1
atomic_int(x);
3 for (int local x
thread 1

}

}

<

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

// dynamic work based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

atomic_int x(0);
void parallel loop(...) {

}

for (int local x

}

A

local x
local x

// dynamic work

X: 5
0 - local x - 4
l - local x - 3

atomic_fetch add(&x,1);
SIZE;
atomic fetch add(&x,1)) {

based on x

Schedule

* DOALL Loops

* Parallel Schedules:
* Static
* Global Worklists
* Local Worklists

Work stealing - local worklists

* More difficult to implement: typically requires concurrent data-
structures

* low contention on local data-structures

* potentially better cache locality

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

0 1 3 4

N

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

1 4

N

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

steal!

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

Queue O Queue 1

thread O thread 1

Work stealing - local worklists

* How to implement:

void foo() {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

Work stealing - local worklists

* How to implement:

void foo() { void parallel loop(..., int tid) {
—for—(x—=0;—=x<S5IZE;—=x+H)—< for (x = 0; x < SIZE; x++) {
H—dynamie—work—based—on—=x% // dynamic work based on x
—r }
}
}

Make a new function, taking any variables used in loop body as args. Additionally take in a thread id

Work stealing - local worklists

* How to implement:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {
void foo() {
.« for (x = 0; x < SIZE; x++) {
—for(x—=03—% < SIZE;—=x+H)—< // dynamic work based on x
H—dynramie—work—based—on—=x% }
—r }

Make a global array of concurrent queues

Work stealing - local worklists

* How to implement:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {
void foo() {
.« for (x = 0; x < SIZE; x++) {
—for(x—=03—% < SIZE;—=x+H)—< // dynamic work based on x
H—dynramie—work—based—on—=x% }
—r }

What type of queues?

Make a global array of concurrent queues

Work stealing - local worklists

* How to implement:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {

void foo() {
for (x = 0; x < SIZE; x++) {

= // dynamic work based on x
ara dyn amic—work basedon—=x }
s }

What type of queues?
We’re going to use InputOutput Queues!
Make a global array of concurrent queues

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

0 1 2 3 ,
input phase

— T,

Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes
0 1 2 3 _
input phase
/ \
1 2 3 Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

1 2 3

\

input phase

2 3 Input/output Queues

0
/
1
\ / output phase

thread O thread 1

Work stealing - local worklists

concurrent queues cg[NUM THREADS];
void foo() {

First we need to initialize the queues

Work stealing - local worklists

concurrent queues cg[NUM THREADS];

void foo() { void parallel eng(..., int tid, int num threads)
e o o {

// Spawn threads to initialize

. . .. int chunk size = SIZE / NUM_THREADS;
// join initializing threads

int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
cq[tid].enq(x);

})

}

Just like the static schedule, except we are
enqueuing

Work stealing - local worklists

.
concurrent_queues cq[NUM THREADS]; Make sure to account for boundary conditions!

void foo() { void parallel eng(..., int tid, int num threads)
e o o {

// Spawn threads to initialize

. . .. int chunk size = SIZE / NUM_THREADS;
// join initializing threads

int start = chunk size * tid;

int end = start + chunk size;

for (int x = start; x < end; x++) {
cq[tid].enq(x);

})

}

Just like the static schedule, except we are
enqueuing

Work stealing - local worklists

* How to implement in a compiler:

NUM THREADS = 2;

SIZE = 4;
CHUNK = 2;
X 0 1 2 3

tid 0 0 1 1

Make sure to account for boundary conditions!

void parallel eng(..., int tid, int num threads)

{

int chunk size = SIZE / NUM_THREADS;
int start = chunk size * tid;
int end = start + chunk size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);
}
}

Just like the static schedule, except we are
enqueuing

Work stealing - local worklists

concurrent_queues Cq[NUM_THREADS]; void parallel loop(..., int tid, int num threads) ({
void fOO() { for (x = 0; x < SIZE; x++) {

o // dynamic work based on x

// initialize queues }

// join threads }

// launch loop function

How do we modify the parallel loop?

Work stealing - local worklists

concurrent_queues Cq[NUM_THREADS] ; void parallel loop(..., int tid, int num threads) ({

void foo() { int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// initialize queues {
// join threads // dynamic work based on task

}

}
// launch loop function

loop until the queue is empty

Work stealing - local worklists

concurrent_queues Cq[NUM_THREADS] ; void parallel loop(..., int tid, int num threads) ({

void foo() { int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// initialize queues {
// join threads // dynamic work based on task

}

}
// launch loop function

loop until the queue is empty
Are we finished?

Work stealing - local worklists

concurrent queues cq[NUM THREADS]; atomic_int finished threads(0);
. - - void parallel loop(..., int tid, int num threads) {
void foo() { -
oo int task = 0;
// initialize queues for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// join threads {

// dynamic work based on task
}

// launch loop function atomic_ fetch add(&finished threads,l);

}

Track how many threads are finished

Work stealing - local worklists

concurrent queues cg[NUM THREADS]; atomic_int finished threads(0);
void fOO() { void parallel loop(..., int tid, int num threads) ({
oo int task = 0;
// initialize queues for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
// join threads { ,
// dynamic work based on task
}
// launch loop function atomic_fetch add(&finished threads,l);
... while (finished threads.load() != num threads) ({
; }

While there are threads that are still working

Work stealing - local worklists

concurrent queues cg[NUM THREADS];
void foo() {

// initialize queues
// join threads

// launch loop function

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task

}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();

pick a random target and steal a task

concurrent queues cg[NUM THREADS];
void foo() {

Work stealing - local worklists

// initialize queues
// join threads

// launch loop function
// join loop threads

}

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}
}

concurrent queues cg[NUM THREADS];

Work stealing - local worklists

void foo() {

// initialize queues

// join threads

// launch loop function
// join loop threads

join the threads

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

}

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}
}

Work stealing - local worklists

|IOQueue O
0 1
thread O

|IOQueue 1
3 4
thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

|IOQueue O
0 1
thread O

|IOQueue 1
3 4
thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

|IOQueue O

|IOQueue 1

thread O

thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

atomic_int finished threads(0);

void parallel loop(..., int tid, int num threads
I0Queue 0 I0Queue 1 P —1ooP (- -+ ’ -) A

int task = 0;

for (x = cq[tid].deq(); x !'= -1; KIEHCOICEINEEEN)
1 4 {

// dynamic work based on task

}

atomic_fetch add(&finished threads,1);

0 while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

thread O - // perform task
}
}

Work stealing - local worklists

|IOQueue O

|IOQueue 1

thread O

thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Work stealing - local worklists

atomic_int finished threads(0);

void parallel loop(..., int tid, int num threads
I0Queue 0 I0Queue 1 P —1ooP (- -+ ’ -) A
int task = 0;
1 for (x = cq[tid].deq(); x !'= -1; KIEHCOICEINEEEN)
{
// dynamic work based on task

}

atomic_fetch add(&finished threads,1);

0 while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

thread O - // perform task
}
}

Work stealing - local worklists

finished threads: 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

|OQueue O |OQueue 1

int task = 0;

1 for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task

}

0 while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
thread O - // perform task
}

}

}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task
}

atomic_fetch add(&finished threads,1);
while (finished threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int B@EGEEE // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

thread O

|IOQueue 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())

{

// dynamic work based on task

}

atomic_fetch add(&finished threads,1);

while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from

int task = cq[target].deq();
if (task != -1) {

// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 1

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

finished!

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

|IOQueue 1

thread O

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{

// dynamic work based on task
}

atomic_fetch add(&finished threads,1);
while (finished threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
}

Work stealing - local worklists

finished threads: 2

|IOQueue O

|IOQueue 1

thread O

thread 1

atomic_int finished threads(0);
void parallel loop(..., int tid, int num threads) ({

int task = 0;

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task
}
atomic_ fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({

int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {

// perform task

Thanks!

* Work on midterm!
* Ask on piazza if you have questions or comments

* Homework 3 is out

* Do the quiz!

