
CSE113: Parallel Programming
Feb. 2, 2022

• Topics:
• Input/output queues
• Producer consumer queues

• Synchronous
• Circular buffer

Announcements

• HW1 grades might be delayed until Monday
• Let us know ASAP if there are issues

• Homework 2 is due today
• Sanya has office hours
• We will keep an eye on Piazza and try to ask questions asked before 5 pm

• Homwork 3 will be released today by midnight
• Due in 2 weeks

Announcements

• Midterm is released on Monday
• asynchronous, 1 week (no time limit)
• Open note, open internet (to a reasonable extent: no googling exact

questions or asking questions on forums)
• do not discuss with classmates AT ALL while the test is active
• No late tests will be accepted.

• Prioritize midterm next week!

Homework clarifications

• Conditional variables
• They are not allowed in your solution, but they are interesting
• https://en.cppreference.com/w/cpp/thread/condition_variable

• Part 2: reader/writer
• You cannot significantly slow down readers in isolation

• Part 3: keeping the structure:
• you can re-arrange functions, just no changing the high-level implementation

Homework clarifications

• You can share results, but not code

Today’s Quiz

• Due Monday by class. Please do it!

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Review

Linearizability

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

slider game!

try to slide the linearization
point within its range
to justify the outcome

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

This is allowed now!

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

How about a stack?

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

allowed!
Guaranteed?

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

guaranteed?

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==??

guaranteed?

Input/Output Queues

Input/Output Queues

• Queue in which multiple threads read (deq), or write (enq), but not
both.

• Why would we want a thing?

• Computation done in phases:
• First phase prepares the queue (by writing into it)
• All threads join
• Second phase reads values from the queue.

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

Thread 0:
enq(6);

Thread 1:
enq(7);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

Thread 0:
enq(6);

Thread 1:
enq(7);

end

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end

7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end

6 7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order
threads add their data? No!
Because there are no deqs!

Thread 0:
enq(6);

Thread 1:
enq(7);

end

Now enqueue

enq

• Now we only do deqs

6 7 8 9 10 11 12

end

enq

• Now we only do deqs

6 7 8 9 10 11 12

endfront

enq

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

enq

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();

enq

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();

data index
T0

data index
T1

enq

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read
data

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

Does list need to be atomic?

How to make sure the queue
has an element in it before
you dequeue?

What can go wrong if we deq and enq?

6 7 8 9 10 11 12

endfront

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

Thread 0:
enq(1);

Thread 1:
deq();

What can go wrong if we deq and enq?

6 7 8 9 10 11 12

endfront

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

Thread 0:
enq(1);

Thread 1:
deq();

Nothing!
Seems to work
if the queue is like
this

but we need to
think about corner cases

What can go wrong if we deq and enq?

end front

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

Thread 0:
enq(1);

Thread 1:
deq();

Nothing!
Seems to work
if the queue is like
this

but we need to
think about corner cases

Blocking?

• Does the input/output queue block?

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

reserved
T0

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

reserved
T0

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

reserved
T0

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

reserved
T0

reserved
T1

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

reserved
T0

reserved
T1

Both threads need to execute this instruction. What happens if one is delayed?

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

reserved
T0

reserved
T1

Both threads need to execute this instruction. What happens if one is delayed?
It doesn’t matter! The other thread can still keep going!

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

reserved
T0

reserved
T1

Both threads need to execute this instruction. What happens if one is delayed?
It doesn’t matter! The other thread can still keep going!

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

int deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

Could we implement a blocking
version of this queue?

class InputOutputQueue {
private:

int front;
int end;
int list[SIZE];
mutex m;

public:
void enq(int x) {

m.lock();
list[end] = x;
end++;
m.unlock();

}

int deq() {
m.lock();
int tmp = list[front];
front++;
m.unlock();
return tmp;

}
}

Could we implement a blocking
version of this queue?

Just add a mutex!

What are the pros and cons?

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
m.lock();
end++;
list[end] = x;
m.unlock();

}

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
m.lock();
end++;
list[end] = x;
m.unlock();

}

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
m.lock();
end++;
list[end] = x;
m.unlock();

}

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
m.lock();
end++;
list[end] = x;
m.unlock();

}

reserved
T0

say this thread is delayed

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
m.lock();
end++;
list[end] = x;
m.unlock();

}

reserved
T0

say this thread is delayed now

Can thread 1
make progress?

Implementation

Thread 0:
enq(6);

Thread 1:
enq(7);

end

void enq(int x) {
m.lock();
end++;
list[end] = x;
m.unlock();

}

reserved
T0

say this thread is delayed now

Can thread 1
make progress?

This implementation is blocking!

On to new material!

Schedule

• Producer Consumer queues
• Synchronous
• Circular buffer

Producer Consumer Queues

• 1 enq, 1 deq
• enq’er cannot deq
• deq’er cannot enq

• Example: printf:
• your program equeues values to print
• the terminal process dequeues values and prints them

Synchronous Producer Consumer Queues

• First implementation:
• Synchronous
• Slow
• Good for debugging

Synchronous Producer Consumer Queues

• First implementation:
• Synchronous
• Slow
• Good for debugging

• enq does not return until value is deq’ed

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait
returns 7

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

both can continue

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();

wait

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();7

wait
pushes 7

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();7

returns 7
pushes 7

They both can continue

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appear

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

first
prepare
the box

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

then set
the flag

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

then set
the flag

now the consumer can read from the box!

Synchronous Producer Consumer Queues

Producer Thread
enq(7); Consumer Thread

deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7); Consumer Thread

deq();
deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

what happens
when there are
two deqs?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

what happens in the
next deq?

How to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}what happens in the

next deq?

How to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

waiting like we are
supposed to

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

reset (now with extra enq)

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

extra enq

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

8

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

7 was dropped!

how to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

8

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

7 was dropped!

how to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

reset

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Schedule

• Producer Consumer Queues
• Synchronous
• Circular buffer

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

7

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 7

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

89

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 8

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

finishes

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

910

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

returns 9

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();
deq();

blocks when there is nothing in the
queue

Producer Consumer Queues

• How do we implement it?

Producer Consumer Queues

• Start with a fixed size array

Producer Consumer Queues

• Start with a fixed size array

We will use what is called a circular buffer method

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

3

...

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

we will assume modular
arithmetic:

if x = (SIZE - 1) then
x + 1 == 0;

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail:

enq to the head, deq from the
tail

tail

head

valid items in the
queue

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

tail

head

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

tail

head

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

but then
how to tell
full queue from
empty?

tail

head

3

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head + 1 == tail

tail

head

...

wasting one
location, but its okay...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

This looks like the two threads don’t even share
head and tail! What is missing?

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

what happens if we try to dequeue here?

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

similarly for enqueue
but why can’t we enqueue?

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

incrementing the head would make it empty!

enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

we need to wait for there
to be room

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the
queue

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the
queue

Do these need to be atomic RMWs?

Next week

• Work stealing and generalized concurrent objects

• Get HW 2 turned in today!

• HW 3 is out today. You can get started on Part 1

• Prepare for midterm on Monday

