
CSE113: Parallel Programming
Feb. 2, 2022

• Topics: 
• Concurrent data structure 

specifications
• Breaking sequential consistency
• Linearizability 

• Input/output concurrent queues



Announcements 

• Expect HW1 grades by Friday
• Let us know if there are any issues ASAP
• Sanya is traveling so there may be some delay

• Homework 2 is due on Friday
• Please use office hours or piazza if you have questions
• Remember, nights and weekends have no guarantees of responses. Get started 

ASAP!
• I have office hours tomorrow. They are hybrid; please indicate on the sign up sheet if 

you are in person or remote.
• Reese has office hours after class today; Tim has office hours on Thursday. Sanya has 

them on Friday



Announcements 

• Homework 3 assigned on Friday by midnight
• Should have material to get started by end of Friday lecture

• Midterm is released in 1 week 
• asynchronous, 1 week (no time limit) 
• Open note, open internet (to a reasonable extent: no googling exact 

questions or asking questions on forums)
• do not discuss with classmates AT ALL while the test is active
• No late tests will be accepted.



Homework clarifications

• Conditional variables
• They are not allowed in your solution, but they are interesting
• https://en.cppreference.com/w/cpp/thread/condition_variable

• Part 2: reader/writer
• You cannot significantly slow down readers in isolation

• Part 3: keeping the structure:
• you can re-arrange functions, just no changing the high-level implementation



Homework clarifications

• You can share results, but not code



Today’s Quiz

• Due Tomorrow by midnight



Previous quiz



Previous quiz



Previous quiz



Previous quiz



Review



Concurrent Data Structures



Shared memory concurrent objects

printf(“hello world\n”);

printf(“h”);
printf(“e”);
printf(“l”);
printf(“l”);
printf(“o”);

How does it actually work?

terminal:
$ ./a.out

./a.out terminal display

concurrent queue

You can force a flush with: fflush(stdout)



Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

global variables:

int tylers_account = 0;



Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;



Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;

what happens if
we run these 
concurrently?



Non-thread-Safe Data Structures



Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
m.lock();
tylers_account.buy_coffee();
m.unlock();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
m.lock();
tylers_account.get_paid();
m.unlock();

}

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;
mutex m;

The object is not “thread safe”



Thread-safe Data Structures



Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

global variables:

bank_account tylers_account;



Non-locking Concurrent Data Stuctures



Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {       
atomic_fetch_add(&balance, -1);     

}

void get_paid() {      
atomic_fetch_add(&balance, 1);      

}

private:
atomic_int balance;

};

global variables:

bank_account tylers_account;



Sequential Consistency



Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?



Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?

q.enq(6);
int t0 = q.deq();

int t1 = q.deq();
q.enq(7);



Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?

q.enq(6);

int t0 = q.deq();

int t1 = q.deq();

q.enq(7);

Valid execution!

Are there others?



Next example



Thread 0:
s.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> s;

Thread 1:
int t1 = q.dec();

Is it possible for both t0 and t1 to be 0 at the end?



Thread 0:
s.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> s;

Thread 1:
int t1 = q.dec();

Is it possible for both t0 and t1 to be 0 at the end?

int t0 = q.deq();

int t1 = q.dec();q.enq(7);



Thread 0:
s.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> s;

Thread 1:
int t1 = q.dec();

Is it possible for both t0 and t1 to be 0 at the end?

int t0 = q.deq();

int t1 = q.dec();

q.enq(7);

No place for this event to go!



New material!



Schedule

• Problems with sequential consistency

• Linearizability

• Specialized concurrent queues



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

each method as a start, and end time stamp

q.enq(7)

method is called

method returns



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This timeline seems 
strange...



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in 
sequential consistency!

SC doesn’t care about real time, 
only if it can construct its virtual 
sequential timeline



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in 
sequential consistency!

SC doesn’t care about real time, 
only if it can construct its virtual 
sequential timeline



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in 
sequential consistency!

SC doesn’t care about real time, 
only if it can construct its virtual 
sequential timeline



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in 
sequential consistency!

SC doesn’t care about real time, 
only if it can construct its virtual 
sequential timeline

q.enq(6);

q.deq() == 6

q.enq(7);



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q

p.enq(11) q.enq(2) p.deq()==12 

q.enq(1) q.deq()==2p.enq(12)



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

p.enq(11)

p.deq() == 12

p.enq(12)



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12 

q.enq(1) q.deq()==2p.enq(12)



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12 

q.enq(1) q.deq()==2p.enq(12)

q.enq(2)

q.deq() == 2

q.enq(1)



Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

Now consider them all together

p.enq(11) q.enq(2) p.deq()==12 

q.enq(1) q.deq()==2p.enq(12)



Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12 

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2



Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12 

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2);

q.enq(1);



Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12 

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2);

q.enq(1);

No place for this one to go!



What does this mean?

• Even if objects in isolation are sequentially consistent

• Programs composed of multiple objects might not be!

• We would like to be able to use more than 1 object in our programs!



Schedule

• Problems with sequential consistency

• Linearizability

• Specialized concurrent queues



Linearizability

• Linearizability
• Defined in term of real-time histories
• We want to ask if an execution is allowed under linearizability

• Slightly different game:
• sequential consistency is a game about stacking lego bricks
• linearizability is about sliders



Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point



Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’



Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

empty queue enq(1) queue contains 1



Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

queue contains [1,2] deq() queue contains [1], deq returns 2.



Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

queue contains [1,2] peek() return value from M, i.e. 2



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

slider game!

try to slide the linearization
point within its range
to justify the outcome



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6



Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

This is allowed now!



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

allowed! 
Guaranteed?



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

guaranteed?



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==??

guaranteed?



Linearizability

• We spent a bunch of time on SC... did we waste our time?
• No!
• Linearizability is strictly stronger than SC. Every linearizable execution is SC, 

but not the other way around.

• If a behavior is disallowed under SC, it is also disallowed under linearizability.

• Overall strategy:
• Write our objects to be linearizable: need to identify linearizable points
• Reason about our programs using SC: no need for timelines, just need code



Linearizability

• How do we write our programs to be linearizable?
• Identify the linearizability point
• One indivisible region (e.g. an atomic store, atomic load, atomic RMW, or 

critical section) where the method call takes effect. Modeled as a point.

object state: M object state: M’

empty queue enq(1) queue contains 1



Linearizability

• Locked data structures are linearizable. 

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M

bank_account is 0 buy_coffee() bank_account is -1

object state: M’



Linearizability

• Locked data structures are linearizable. 

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released



Linearizability

• Locked data structures are linearizable. 

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released
lets say released.



Linearizability

• Our lock-free bank account is 
linearizable:
• The atomic operation is the 

linearizable point

class bank_account {
public:
bank_account() {
balance = 0; 

}

void buy_coffee() {       
atomic_fetch_add(&balance, -1);     

}

void get_paid() {      
atomic_fetch_add(&balance, 1);      

}

private:
atomic_int balance;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

atomic_fetch_add



Lecture schedule

• Revisiting sequential consistency

• Linearizablity

• Progress Properties

• Implementing a set



Progress properties

• Going back to specifications:

Thread 0

Thread 1

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?



Progress properties

• Going back to specifications:

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other 
threads, we say that it is blocking 

Thread 0

Thread 1



Progress properties

• Going back to specifications:

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other 
threads, we say that it is blocking 

Thread 0

Thread 1

mutexes have a blocking specification



Progress properties

• Going back to specifications:

mutex request mutex acquire

mutex request

Recall the mutex

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other 
threads, we say that it is blocking 

Thread 0

Thread 1

What now?!



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

for mutexes, the specification required that the system hang.



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

for mutexes, the specification required that the system hang.
no such specification here. 



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Non-blocking specification:
Every thread is allowed to continue executing 
REGARDLESS of the behavior of other threads

for mutexes, the specification required that the system hang.
no such specification here. 



Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Non-blocking specification:
Every thread is allowed to continue executing 
REGARDLESS of the behavior of other threads

This is a specification property, not an implementation
property! You can implement your concurrent objects
with locks and have a “blocking implementation”. 

But that is because of implementation choice, not because
of specification requirements.



Terminology overview

• Thread-safe object:

• Lock-free object:

• Blocking specification:

• Non-blocking specification:

• (non-)blocking implementation:



Terminology overview

• Sequential consistency:

• Linearizability:

• Linearizability point:



Schedule

• Problems with sequential consistency

• Linearizability

• Specialized concurrent queues



Concurrent Queues

• List of items, accessed in a first-in first-out (FIFO) way
• duplicates allowed
• Methods
• enq(x) put x in the list at the end
• deq() remove the item at the front of the queue and return it.
• size() returns how many items are in the queue



Concurrent Queues

• General implementation given in Chapter 10 of the book.
• Similar types of reasoning as the linked list
• Lots of reasoning about node insertion, node deletion
• Using atomic RMWs (CAS) in clever ways

• We will think about specialized queues
• Implementations can be simplified!



Input/Output Queues

• Queue in which multiple threads read (deq), or write (enq), but not 
both.

• Why would we want a thing?

• Computation done in phases:
• First phase prepares the queue (by writing into it)
• All threads join
• Second phase reads values from the queue.



Input/Output Queues

• Example: Information flow in graph applications:



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

input

output

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

source 0 source 1

initial



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5

queue 1

queue 0

input

output

concurrent enqueues!

source 0 source 1

thread 0 thread 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6

queue 1

queue 0

input

output

source 0 source 1

thread 0
thread 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1

thread 0



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

join all threads and clear input
source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

swap!

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0
thread 1

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

source 0 source 1



Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

queue 1

queue 0

input

output

and so on...

source 0 source 1



Implementation



Implementation

Allocate a contiguous array

Pros: 
? 

Cons:
?



Implementation

Allocate a contiguous array

Pros: 
+ fast!
+ we can use indexes instead of addresses 

Cons:
- need to reason about overflow!



Note on terminology

• Head/tail - often used in queue implementations, but switches when 
we start doing circular buffers.

• Front/end - To avoid confusion, we will use front/end for input/output 
queues.



Implementation

end



Implementation

What happens if a thread wants
to add an element?end



Implementation

What happens if a thread wants
to add an element?

Think sequentially:

end



Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment end

end



Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment end

reserved!

end



Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

reserved!

end



16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

end



16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment end
* add the element

done!

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

Two threads cannot reserve the same space!
We’ve seen this before

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

Thread 0:
enq(6);

Thread 1:
enq(7);

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

Thread 0:
enq(6);

Thread 1:
enq(7);

end



Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

reserved
T1

does it matter which order 
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end



7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order 
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

end



6 7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&end, 1);

reserved
T0

does it matter which order 
threads add their data? No! 
Because there are no deqs!

Thread 0:
enq(6);

Thread 1:
enq(7);

end



class InputOutputQueue {
private:

atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

int size() {
return end.load();

}
}

How to protect against overflows?



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

end



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq();

Thread 1:
deq();

data index
T0

data index
T1



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read 
data



What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

endfront

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&front, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read 
data

How to implement
a stack?



class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return ??;

}
}



class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return ??;

}
}

How about size?



class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

how about size?

how do we reset?



how about size?

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}

how do we reset?
Reset front and end



how about size?

does the list need
to be atomic?

how do we reset?
Reset front and end

class InputOutputQueue {
private:

atomic_int front;
atomic_int end;
int list[SIZE];

public:
InputOutputQueue() {

front = end = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&end, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&front, 1);
return list[reserved_index];

}

int size() {
return end.load() - front.load();

}
}



See you on Friday!

• Work on HW 2!
• Let us know if you need help! Piazza, office hours, etc.

• My office hours are tomorrow
• They are hybrid (remote or in-person)
• E2 - 233 (no nameplate still)
• Sign-up sheet is still the format


