
CSE113: Parallel Programming
Feb. 23, 2022

• Topics: 
• Memory consistency models:

• Relaxed memory consistency
• Examples
• Compiling memory consistency

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



Announcements 

• HW 4 is out
• Due on March 4
• Please don’t share timing results until next Monday
• You mostly had what you needed at the end of Friday
• You will have everything you need to do it at the end of lecture today

• Grades for HW 2 are out
• Let us know by next Monday if you have any issues

• Grades for Midterm are on their way
• Expect them by Monday



Today’s Quiz

• Due Tomorrow by midnight; please do it!



Previous quiz



Previous quiz



Previous quiz

• Didn’t save the question:
• What is the difference between a fence and a barrier?

• The naming can get confusing!

• https://en.wikipedia.org/wiki/Barrier_(computer_science)
• https://en.wikipedia.org/wiki/Memory_barrier



Review



Sequential consistency and litmus tests



Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Is it possible for 
t0 == 0 and t1 ==1



Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1);

int t0 = y.load();
y.store(1);

int t1 = x.load();

Is it possible for 
t0 == 0 and t1 ==1



Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1);

int t0 = y.load();

y.store(1);

int t1 = x.load();

Is it possible for 
t0 == 0 and t1 ==1



Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Is it possible for 
t0 == 1 and t1 ==0

x.store(1);

int t0 = y.load();
y.store(1);

int t1 = x.load();

How about:



Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Is it possible for 
t0 == 1 and t1 ==0

x.store(1);

int t0 = y.load();

y.store(1);

int t1 = x.load();

How about:

no where for this one to go!



Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?



Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

x.store(1);

int t0 = y.load(); int t1 = x.load();

y.store(1);



Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

x.store(1);

int t0 = y.load();

int t1 = x.load();

y.store(1);

no place for this one!



X86 TSO operational model



Thread 0: Thread 1:

mov [x], 1

mov %t0, [y]
mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

mov [x], 1 mov [y], 1

execute first instruction
what happens to the stores?

x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

eventually they flush to main memory



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:1

eventually they flush to main memory



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

rewind



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

execute first instruction



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

values get stored in SB



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Execute next instruction

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Values get loaded from memory

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

we see t0 == t1 == 0!

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Store buffers are drained eventually



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:1
y:1

Store buffers are drained eventually
but we’ve already done our loads



X86 TSO programming model



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y] L:mov %t1, [x]

S:mov [y], 1



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order 

satisfy constraints

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order

we can ignore this condition!!



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1 Now we can satisfy the condition!

we can ignore this condition!!



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order 

satisfy constraints

Lets peak under the hood here

we can ignore this condition!!



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order 

satisfy constraints

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads 

we can ignore this condition!!



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order 

satisfy constraints

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads 

we can ignore this condition!!

put y in SB



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1 store buffer gets flushed

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads 

we can ignore this condition!!

put y in SB



TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.



Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

mfence

mfence



Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x] S:mov [y], 1

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

mfence

mfence
So we can’t 
reorder
this instruction
at all!



TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x]

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address



On to new material!



Schedule

• Memory consistency models
• More general relaxed consistency
• Examples
• Compiling relaxed memory models



Other memory models?

• We can specify them in terms of what re-orderings are allowed

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S



Other memory models?

• We can specify them in terms of what re-orderings are allowed

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Sequential Consistency



Other memory models?

• We can specify them in terms of what re-orderings are allowed

NO Different 
address

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

TSO - total store order



Other memory models?

• We can specify them in terms of what re-orderings are allowed

? ?

? ?

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Weaker models?



Other memory models?

• We can specify them in terms of what re-orderings are allowed

NO Different 
address

NO Different 
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

PSO - partial store order

Allows stores to drain from the store buffer in any order



Other memory models?

• We can specify them in terms of what re-orderings are allowed

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

RMO - Relaxed Memory Order

Very relaxed model!



Other memory models?

• FENCE: can always restore order using fences. Accesses cannot be 
reordered past fences!

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order, and 
there is a FENCE between the two accesses,
can it bypass program order?

L S

L

S

Any Memory Model



Schedule

• Memory consistency models
• More general relaxed consistency
• Examples
• Compiling relaxed memory models



Thread 0:
L:mov %t0, [y]
S:mov [x], 1

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:mov %t1, [x]
S:mov [y], 1

First thing: change our syntax to pseudo code



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

First thing: change our syntax to pseudo code
You should be able to find natural mappings
to any ISA



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Question: can t0 == t1 == 1?



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for sequential consistency

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

Not allowed under sequential consistency!



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

What about TSO?

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

What about TSO? NOT ALLOWED!

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

What about PSO?

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

What about PSO? NO!

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

What about RMO? 

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

What about RMO? 

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

What about RMO? YES! 

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

How do we disallow the behavior in RMO?

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

How do we disallow the behavior in RMO?

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

How do we disallow the behavior in RMO?

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

Now we cannot break program order past the fence!
Are we done?

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order 

satisfy constraints

Now we cannot break program order past the fence!
Are we done? The behavior is no longer allowed

YES Different 
address

different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



One more example



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency

respect program order 

satisfy constraints



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about TSO?

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about TSO? NO

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about PSO? 

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about PSO? 

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about PSO? YES 

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

Now it is disallowed in PSO

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about RMO?

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO?

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO? The loads can be reordered also!

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x) L:%t0 = load(y)

What about RMO? add a fence

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

Now the relaxed behavior is disallowed

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence

fence



Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs



Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs

Companies have a history
of providing insufficient
documentation about their
rules: academics have then
gone and figured it out!

Getting better these days



Memory consistency in the real world

• Modern Chips:
• RISC-V : two specs: one similar to TSO, one similar to RMO
• Apple M1: toggles between TSO and weaker (ARM)

• Vulkan does not provide any fences that provide S - L ordering



Memory consistency in the real world

• PSO and RMO were never implemented widely
• I have not met anyone who knows of any RMO taped out chip
• They are part of SPARC ISAs (i.e. RISC-V before it was cool)
• These memory models might have been part of specialized chips

• Interestingly:
• Early Nvidia GPUs appeared to informally implement RMO

• Other chips have very strange memory models:
• Alpha DEC - basically no rules



More about GPU memory models

• GPU Harbor
• created by our teaching staff! Reese Levine and Tim Guo!



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y] L:mov %t1, [x]

S:mov [y], 1

Show this example on GPU Harbor



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for sequential consistency

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

Show this example on GPU Harbor



Where do programming languages fit in?

• One of the highest priorities of a programming language
• Write once, run everywhere



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine

? ?

? ?

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

Two options:

make sure stores
are not reordered
with later loads

make sure loads
are not reordered
with earlier stores



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

This should help you see why you 
want to reduce the number of atomic
load/stores in your program



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

How about this one?



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

x.store(1); fence;
store(x,1);



Memory orders

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

Where have we seen memory_order_relaxed?



Relaxed memory order

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

basically no orderings except for accesses to 
the same address



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

But language is more
relaxed than machine

so no fences are needed



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

Do any of the ISA memory models need any fences
for relaxed memory order?

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



Memory order relaxed

• Very few use-cases! Be very careful when using it
• Peeking at values (later accessed using a heavier memory order)
• Counting (e.g. number of finished threads in work stealing)
• DO NOT USE FOR QUEUE INDEXES



More memory orders: we will not discuss in class 

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

• More memory orders (useful for mutex implementations):
• memory_order_acquire
• memory_order_release

• EVEN MORE memory orders (complicated: in most research it is 
omitted)
• memory_order_consume



A cautionary tale



Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)



Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented



Thread 0:
SPIN:CAS(mutex,0,1);
display.enq(triangle0);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
display.enq(triangle1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented

What is an execution?



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

if blue goes first
it gets to complete
its critical section
while thread 1 is spinning



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go
CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model?

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

NO Different 
address

NO Different 
address

L S

L

S

what can happen in a PSO
memory model?



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle1);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model?

What just happened if this store moves?
NO

NO



Nvidia in 2015

• Nvidia architects implemented a weak memory model

• Nvidia programmers expected a strong memory model

• Mutexes implemented without fences!



Nvidia in 2015

bug found in two
Nvidia textbooks

We implemented 
a side-channel attack
that made the bugs
appear more frequently

These days Nvidia has
a very well-specified 
memory model!



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

fence;

No instructions
can move after
the mutex store!

NO

NO



Memory Model Strength

• If one memory model M0 allows more relaxed behaviors than another 
memory model M1, then M0 is more relaxed (or weaker) than M1.

• It is safe to run a program written for M0 on M1. But not vice versa

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



Memory Model Strength

• Many times specifications are weaker than implementations:
• A chip might document PSO, but implement TSO: 

• Why?

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



See you on Friday!

• Get started on HW 4

• Let us know if there are any issues with HW 2 grades

• Finishing up module 4 on Friday: forward progress models
• Then on to GPUs!


