
CSE113: Parallel Programming
Feb. 16, 2022

• Topics:
• Intro to module 4
• Barriers

Announcements

• Midterm was due on Monday
• Me and Reese will start grading ASAP: 2 week turnaround time

• Homework 2 grades:
• Plan on Friday, you have 1 week to raise any concerns

• Homework 3 is due on Friday
• Several office hours/mentoring hours left
• Piazza is available
• You can share results

• Homework 4 will be assigned Friday
• You should have what you need to get started on part 1 instantly

Today’s Quiz

• Due tomorrow by midnight, please do it!

Previous quiz

Previous quiz

Previous quiz

Previous quiz

Atomic wrapper

• code works now! It was in a different directory

C++ Atomic template
bank_account snapshot;
bank_account update;
bool success;

do {
bank_account snapshot = tylers_account.load();
bank_account update = snapshot;
update.buy_coffee();
success = tylers_account.compare_exchange_strong(snapshot, update);
} while (success == false);

Recall atomic templates allow you to do compare and swap

Review

• Optimizing the concurrent set

Single traversal operations

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

add(c)

c

What could go wrong?

d ea

add(c) Uh-oh

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

remove(b)

Fixed with logical flag

a b d

a not
marked

Fixed with logical flag

a b d

a still
points

to b

Fixed with logical flag

a b d

Logical
delete

Fixed with logical flag

a b d

physical
delete

Fixed with logical flag

a b d

Fixed with logical flag

a b d

b is logically deleted so we
need to retry!

CAS based insertion

a 0 0a b 0e

Adding

Lock-free Lists

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Solution: use CAS

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

success!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

rewind

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

CAS will fail!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

in the case of
fail, start over

Some other
thread inserted

CAS will fail!

Further considerations

• need to include “valid bit” in compare and swap to make sure the
node is still valid

• Can ”pack the bit” into the address (there will always be room
because addresses are byte addressable, and addresses 8 bytes)

• More details in the book!

Schedule

• Module 4 introduction

• Barriers
• Specification
• Implementation

Schedule

• Module 4 introduction

• Barriers
• Specification
• Implementation

Reasoning about concurrency
Mental model of concurrency
• Functional
• Interleavings - events from different threads can interleave
• Atomicity - what events are indivisible?
• Specifications - how can we create useful abstractions (mutexes, concurrent

data structures)

• Performance
• Increase parallelism - judicious use of mutexes, load balancing
• Cache behaviors - threads should try to utilize their own cache lines
• Operating system - yielding/sleeping threads
• Architectural details - instruction-level parallelism

Reasoning about concurrency
• Depending on your needs, programs become more/less complex to

reason about.

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

Reasoning about concurrency
• Depending on your needs, programs become more/less complex to

reason about.

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

In many cases, we use building blocks and specifications to traverse this range

Reasoning about concurrency
• Depending on your needs, programs become more/less complex to

reason about.

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

To get a more complete picture, we will fill in some of the gaps here

Reasoning about concurrency
• Depending on your needs, programs become more/less complex to

reason about.

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

To get a more complete picture, we will fill in some of the gaps here

using barriers
relaxed memory &
forward progress

Reasoning about concurrency
• Depending on your needs, programs become more/less complex to

reason about.

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

An extremely useful
parallel idiom. Not really
enough material to justify
a whole module

relaxed memory &
forward progress

using barriers

Reasoning about concurrency
• Depending on your needs, programs become more/less complex to

reason about.

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

The underlying
foundation that all of
these idioms are built on!

relaxed memory &
forward progress

using barriers

Reasoning about concurrency
• On newer architectures, you may only get specifications about the

relaxed memory and progress. It is up to the user to implement their
own atomics, mutexes, concurrent data structures, etc!

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

The underlying
foundation that all of
these idioms are built on!

relaxed memory &
forward progress

using barriers

Modern chips

• From David Brooks lab at
Harvard:

http://vlsiarch.eecs.harvard.
edu/research/accelerators/di
e-photo-analysis/

• GPUs/accelerators will have
different guarantees w.r.t.
atomics and memory
orderings

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

Historical issues on Nvidia GPUs

Issue implementing
a concurrent data
structure related
to memory orderings

Issue implementing
a mutex relating to
memory orderings

Historical issues on Nvidia GPUs

In both cases, they had reasoned about their implementations exactly
how we have! The issues came from lower in the stack: memory orderings

running a mutex on an iPad GPU?

This one has to do with functional properties of the scheduler

video demo

Reasoning about concurrency
• On newer architectures, you may only get specifications about the

relaxed memory and progress. It is up to the user to implement their
own atomics, mutexes, concurrent data structures, etc!

EasierHarder

using atomics

using concurrent data structures

using mutexes

embarrassingly parallel

The underlying
foundation that all of
these idioms are built on!

relaxed memory &
forward progress

using barriers

Schedule

• Module 4 introduction

• Barriers
• Specification
• Implementation

Barriers

• Why do barriers fit into this module: “Reasoning About Parallel
Computing”?
• Relaxed Memory Models make reasoning about parallel computing HARD
• Barriers make it EASIER (at the cost of performance potentially)

• A barrier is a concurrent object (like a mutex):
• Only one method: barrier (called await in the book)

• Separates computational phases

Barrier Examples

My current favorite: particle simulation

by Yanwen Xu

Barrier Examples

My current favorite: particle simulation

time = 0 time = 1 time = 2

Barrier Examples

My current favorite: particle simulation

time = 0 time = 1

at each time, compute
new positions for each particle
(in parallel)

time = 2

Barrier Examples

My current favorite: particle simulation

time = 0 time = 1 time = 2

at each time, compute
new positions for each particle
(in parallel)

But you need to wait for all particles to be
computed before starting the next time step

barrier(); barrier();

Barrier Examples

• Deep neural networks

from http://cs231n.stanford.edu/

Barrier Examples

• Deep neural networks

from http://cs231n.stanford.edu/

barrier();
barrier();

barrier();

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 arrives

thread 2 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

thread 3 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

thread 3 arrives

now that they have all arrived

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 leaves

thread 1 leaves

thread 2 leaves

thread 3 leaves

now that they have all arrived, they can all leave

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;First, what would we expect

var to be after this program?

thread 0

thread 1

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

gives an event:
barrier arrive

barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

gives an event:
barrier arrive

barrier arrive

barrier arrive needs to wait for all threads
to arrive (similar to how a mutex request must wait for
another to release)

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1 barrier arrive

*x = 1

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1 barrier arrive

*x = 1 barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

now that all threads have arrived:
They can leave (1 event at the same time)

barrier leave

barrier leave

barrier arrive

*x = 1 barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

This finishes the barrier execution

barrier leave

barrier leave

barrier arrive

*x = 1 barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1 var = *x;

what value must this read? Any other value
possible?

barrier leave

barrier leave

barrier arrive

*x = 1 barrier arrive

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

They’ve all arrived

barrier leave

barrier leave

barrier leave

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

They’ve all arrived

barrier leave

barrier leave

barrier leave

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

barrier leave

barrier leave

barrier leave

var = *x + *y

What is this guaranteed to be?

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

barrier leave

barrier leave

barrier leave

var = *x + *y

Barrier Interval 0

sometimes called a phase

Barrier Interval 1

extending to the
next barrier leave

Barriers

• Barrier Property:
• If the only concurrent object you use in your program is a barrier (no

mutexes, concurrent data-structures, atomic accesses)

• If every barrier interval contains no data conflicts, then

your program will be deterministic (only 1 outcome allowed)

• much easier to reason about J

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

no data conflicts means that x is written to at most once
per barrier interval

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

no data conflicts means that x is written to at most once
per barrier interval

*x = 2

*x = 1

not allowed

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

no data conflicts means that x is written to at most once
per barrier interval

*x = 2

*x = 1

we will read from the write
from the most recent barrier interval

Schedule

• Module 4 introduction

• Barriers
• Specification
• Implementation

Barrier Implementation

• First attempt at implementation

class Barrier {
private:

atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
// ??

}

}

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
// What next?

}

}

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
// What next?

}

}

First handle the case where
the thread is the last thread
to arrive

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

}

Spin while there
is a thread waiting
at the barrier

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

}

Spin while there
is a thread waiting
at the barrier

Does this work?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num = 2

num_threads == 2

arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num = 2

num_threads == 2
counter == 2

arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num = 2

num_threads == 2
counter == 0

arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Leaves barrier

num_threads == 2
counter == 0

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Leaves barrier

num_threads == 2
counter == 0

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

but what if the OS preempted thread 1? Or it
was asleep?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

enters next barrier

num_threads == 2
counter == 0

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

but what if the OS preempted thread 1? Or it
was asleep?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num == 1

num_threads == 2
counter == 1

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

but what if the OS preempted thread 1? Or it
was asleep?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num == 1

num_threads == 2
counter == 1

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

Thread 1 wakes up! Doesn’t think its missed anything

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num == 1

num_threads == 2
counter == 1

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

Thread 1 wakes up! Doesn’t think its missed anything

Both threads get stuck here!

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Ideas for fixing?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Ideas for fixing?

Two different barriers that alternate?

Thread 0:
B0.barrier();
B1.barrier();

Thread 1:
B0.barrier();
B1.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Ideas for fixing?

Two different barriers that alternate?

Pros: simple to implement

Cons: user has to alternate barriers

Thread 0:
B0.barrier();
B1.barrier();

Thread 1:
B0.barrier();
B1.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Ideas for fixing?

Two different barriers that alternate?

Pros: simple to implement

Cons: user has to alternate barriers

B.barrier();
if (...) {
B.barrier();

}
B.barrier();

How to alternate these calls?

Sense Reversing Barrier

• Book Chapter 17

• Alternating ”sense” dynamically

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

sync on sense = false

Sense Reversing Barrier

• Book Chapter 17

• Alternating ”sense” dynamically

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

sync on sense = true

class SenseBarrier {
private:

atomic_int counter;
int num_threads;
atomic_bool sense;
bool thread_sense[num_threads];

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;
sense = false;
thread_sense = {true, ...};

}

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}
}

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = false

thread_sense = true thread_sense = true

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = false

thread_sense = true thread_sense = true
arrival_num = 2 arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = false

thread_sense = true thread_sense = true
arrival_num = 2 arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = true

thread_sense = false thread_sense = true
arrival_num = 2 arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = true

thread_sense = false thread_sense = true
arrival_num = 2 arrival_num = 1

Remember the issue! Thread 1 went to sleep around this time
and thread 0 went into the barrier again!

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = true
arrival_num = 1 arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = true
arrival_num = 1 arrival_num = 1

both are waiting!,
but thread 1 can leave

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = false
arrival_num = 1 arrival_num = 1

both are waiting!,
but thread 1 can leave

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = false
arrival_num = 1 arrival_num = 1

Thread 1 finishes the barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = false
arrival_num = 1 arrival_num = 1

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = true

thread_sense = false thread_sense = false
arrival_num = 1 arrival_num = 2

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = true

thread_sense = false thread_sense = false
arrival_num = 1 arrival_num = 2

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = false

thread_sense = false thread_sense = false
arrival_num = 1 arrival_num = 2

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = false

thread_sense = false thread_sense = false
arrival_num = 1 arrival_num = 2

thread 0 can leave, thread 1 can leave and the barrier works
as expected!

See you on Wedensday!

• Starting on module 4

• Get your midterm in!

• Work on HW 3

