CSE113: Parallel Programming

Feb. 14, 2022

* Topics:

e C++ atomic object templates
* RMW implementations
* Continue: general concurrent sets

Announcements

 Midterm is out!
 Midterm is due today at midnight
* No late midterms will be accepted
 No guaranteed help after 5 PM
* Don’t discuss with friends or internet

* Homework 3 is out
* Due Friday at midnight
* You can start discussing results with classmates

e Grades for HW 1 are released
* You have until Tuesday

Announcements

* Last day on concurrent data structures!

* Moving onto reasoning about concurrency on Wednesday

Today’s Quiz

* Due tomorrow by midnight, please do it!

Previous quiz

Concurrent linked lists can be implemented using locks on every node if:

(O locks are always acquired in the same order
(O two locks are acquired at a time
(O Both of the above

(O Neither of the above

Previous quiz

Lock coupling provides higher performance than a single global lock because threads can traverse
the list in parallel

O True

O False

Previous quiz

Optimistic concurrency refers to the pattern where functions optimistically assume that no other
thread will interfere. In the case where another thread interferes, the program is left in an erroneous
state, but since this is so rare, it does not tend to happen in practice.

O True

O False

Previous quiz

After this lecture, do you think you would be able to optimize your implementation of the concurrent
stack in homework 2? Write a few sentences on what you might try.

On to the lecture

 Review is baked in

Schedule

e Using atomic templates for objects in C++
* How atomics are implemented in hardware

e Lock-free concurrent set

Schedule

* Using atomic templates for objects in C++
* How atomics are implemented in hardware

e Lock-free concurrent set

C++ Atomic template

» C++ lets you wrap custom objects/types as an atomic type
* included in <atomic>

e use like this:
e atomic<int> 1i;
* atomic<float> f;

C++ Atomic template

* Lets you:
 load
* store
* exchange
* compare and swap

* It may use a lock behind the scenes!

* Examples

C++ Atomic template

* If you do this to a class, you will lose access to your methods!

* Example:

C++ Atomic template

* How to get your methods back?
* Make a local copy!

bank_account local = tylers_account.load();

local.buy coffee();
tylers_account.store(local);

bank_account local = tylers_account.load();

local.work _one_hour();
tylers_account.store(local);

What happens when we run this?

C++ Atomic template

* How to get your methods back?

* Make a local copy!

Consider 1 iteration
(should end with balance of 0):

thread 0 loads an account of balance O
thread 1 loads an account of balance O
thread 0 buys coffee (local account -1)
thread 1 works 1 hour (local account 1)
thread O stores local back (global balance -1)
thread 1 stores local back (global balance 1)

thread O

bank_account local = tylers_account.load();
local.buy coffee();

tylers_account.store(local);
thread 1

bank_account local = tylers_account.load();
local.work _one_hour();

tylers_account.store(local);

C++ Atomic template

* How to get your methods back?
* Make a local copy!

thread O
Consider 1 iteration
(should end with balance of 0): bank_account local = tylers_account.load();
local.buy coffee();

thread 0 loads an account of balance 0 tylers_account.store(local);
thread 1 loads an account of balance 0 thread 1
thread 0 buys coffee (local account -1) bank_account local = tylers_account.load();
thread 1 works 1 hour (local account 1) local.work_one_hour();

thread O stores local back (global balance -1) tylers_account.store(local);
thread 1 stores local back (global balance 1)

Overall issue: memory accesses are atomic, actions are not!

C++ Atomic template

* CAS to the rescue!

* Optimistically load object and operate on it.
* Before we store, check to see if its changed
e If it has changed, try again.

* Need to do check and store atomically.

C++ Atomic template

bank_account snapshot;
bank_account update;
bool success;

do {

bank _account snapshot = tylers_account.load();

bank_account update = snapshot;

update.buy _coffee();

success = tylers_account.compare_exchange_strong(snapshot, update);
} while (success ==);

Recall atomic templates allow you to do compare and swap

bank_account snapshot;
bank_account update;
bool success;

do {

bank_account snapshot

SUCCESS

} while (success ==);

thread 0 loads global balance 0

thread

thread

thread

thread

thread

thread

thread

1

loads global balance 0
buys coffee

works 1 hour

CAS updated back

CAS updated back
retries:

loads global balance 1

= tylers_account. load();
bank_account update = snapshot;
update.buy coffee();

tylers_account.compare_exchange_strong(snapshot, update);

(snapshots 0)
(snapshots 0)
(updated account -1)

(updated account 1)
(global balance 0, snapshot 0, updated 1) -

(global balance 1, snapshot 0, updated -1)

(snapshots 1)

Consider 2 threads
thread 0 is buying
coffee and thread 1
is working

- FAIL

Question:
* |s it fair?

* What are the pros and cons of this approach?

Demo

* Performance

* How does lock freedom effect things?

Schedule

e Using atomic templates for objects in C++
* How atomics are implemented in hardware

e Lock-free concurrent set

How is CAS (and others) implemented?

e X86 has an actual instruction
e ARM and POWER are load linked store conditional

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread 0O:
atomic CAS(a,...);

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread 0O:
atomic CAS(a,...);

AN

da

a no other thread can access

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

AN

da

a no other thread can access

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

\Aait

da

a no other thread can access

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

Aait

da

a no other thread can access

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

Aait

da

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O: thread 1:
atomic CAS(a,...); a.store(..);

once the lock is released then we can access

da

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread O:

atomic CAS(a,...); thread 1: thread 2:

a.store(..); a.store(..);

Pros: if there is contention, the CAS
will complete successfully

B

Pessimistic Concurrency

* X86 has an actual instruction: lock the memory location
* Known as Pessimistic Concurrency
* Assume conflicts will happen and defend against them from the start

thread 0O:
atomic CAS(a,...);

Cons: if no other threads are contending, lock
overhead is high

da

N
L

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1; For this example consider an atomic increment

store_exclusive(a, tmp);

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:
tmp = load exclusive(a,...);
tmp += 1;

store exclusive(a, tmp);

before we store, we have to check if there
was a conflict.

da

TO_exclusive =1

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);

da

TO_exclusive =1

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store_exclusive(a, tmp);

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store exclusive(a, tmp);

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store exclusive(a, tmp);

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O: thread 1:
tmp = load exclusive(a,...); a.store(...)
tmp += 1;

store exclusive(a, tmp);

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

solution: loop until success:

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);
tmp += 1;

} while(!store exclusive(a, tmp));

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);
tmp += 1;

} while(!store exclusive(a, tmp));

da

TO_exclusive =1

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);

tmp += 1; Pros: very efficient when there is no conflicts!

} while(!store exclusive(a, tmp));
Cons: conflicts are very expensive!

Spinning thread might starve (but not indefinitely)

d if other threads are constantly writing.

TO_exclusive =1

Optimistic Concurrency

* ARM has load/store exclusive
* Known as Optimistic Concurrency
* Assume no conflicts will happen. Detects and reacts to them.

thread O:

do {

tmp = load exclusive(a,...);

tmp += 1; ARM implements all atomics this way!

} while(!store exclusive(a, tmp));

da

TO_exclusive =1

Godbolt example

* Show compiler examples

Schedule

e Using atomic templates for objects in C++
* How atomics are implemented in hardware

* Lock-free concurrent set

Thanks to Roberto Palmieri (Lehigh University) and material
from the text book for some of the slide content/ideas.

Review our set

Set Interface

e Unordered collection of items
* No duplicates

* Methods
* add (x) put xin set
* remove (x) take x out of set
e contains (x) testsif xin set

List Node

class Node {
public:
Value v;
int key;
Node *next;

The List-Based Set

G B — bl — (5

/[M\)]

Sorted with Sentinel nodes
(min & max possible keys)

Sequential List Based Set

add(b)

([3F—Gal[F—c[3—FT]

remove(b)

(T3—>(a] - b 3=—>(c]

Sequential List Based Set

add(b)
CB—»EBY>EI3—>@D
remove(b)

(T3]~ b 3—>(c]

Schedule

e 3 approaches so far: each one slightly more complex

Coarse-Grained Locking

6
([3—el3F—k[3—dD)

Coarse-Grained Locking

Coarse-Grained Locking

i
(T3>l 3+ I%»@D
MEAN
honk!!]

Simple but inefficient!

Lock coupling

Hand-over-Hand locking

([F—Gl3—b[F—{]]

O

Hand-over-Hand locking

6

%—'@3—»@3

O

Hand-over-Hand locking

Hand-over-Hand locking

6 6

Hand-over-Hand locking

@

O

Removing a Node

HE g CIE g O g O g C1N

OO.@

Removing a Node

O

Removing a Node

6 6
B (OO g Ok g C18

Oo,

Removing a Node

6 6
el 3l 5 ([3]

O,

Removing a Node

6 O

Removing a Node

6
L rlaly BEagtlB

OO.Q

Removing a Node

6
L rlaly BEagtlB

OO

Why hold 2 locks?

g

Concurrent Removes

HE g CIE g O g O g C1N

5}
O o, '

Concurrent Removes

[[F=>l—~kl5> [0l

5}
O o, '

Concurrent Removes

BB {OE 5o OE g OE gC1l

5}
O o, '

Concurrent Removes

HE g OIE o OE ;o O g C1N

5}
O o, '

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Uh, Oh

SEagth]
Oy, .

Uh, Oh

Bad news, ¢ not removed

T
L

Optimistic traversing

Optimistic: Traverse without Locking

Optimistic: Lock and Load

Optimistic: Lock and Load

What could go wrong?

What could go wrong?

> @3H—E

What could go wrong?

Data conflict!

* Red thread has the lock on a node (so it can modify the node)
* Blue thread is traversing without locks

e What do we do?

Lock-free reasoning

* Default atomic accesses are documented to be sequentially
consistent.

class Node {
public:
Value v;
int key;
Node *next;

What could go wrong?

What could go wrong?

> @3H—E

What could go wrong?

No more data
conflict, but we do need
to reason about
interleavings and threads
concurrent threads contending
for values.

What could go wrong?

What could go wrong?

What could go wrong?

<N
(3—GD |(mm| @z—eD

Uh-oh
O QQ

Validate — Part 1

; : d[F=>(e])

Yes, b still
reachable
from head

Validate Part 2
(while holding locks)

Yes, b still
points to d

Even more difficulties

* We had to implement our own garbage collector ®

Can we optimize more?

e Scan the list once?

Two step removal List

* remove ()
e Scans list (as before)
* Locks predecessor & current (as before)

* Logical delete
* Marks current node as removed (new!)

* Physical delete
» Redirects predecessor’s next (as before)

Two step removal Removal

ERE AN E AN E BN E L CINE g

Two step removal Removal

Present in list

Two step removal Removal

Logically deleted

Two step removal Removal

Physically deleted

Two step removal Removal

Physically deleted

Two step remove list

e All Methods

* Scan through locked and marked nodes

* Must still lock pred and curr nodes.

Validation

* No need to rescan list!
* Check that pred is not marked
 Check that curr is not marked

* Check that pred points to curr

What could go wrong?

What could go wrong?

> @3H—E

What could go wrong?

What could go wrong?

What could go wrong?

What could go wrong?

<N
(3—GD |(mm| @z—eD

Uh-oh
O QQ

Fixed with logical flag

8 EgdOIERdt B
=

Fixed with logical flag

Fixed with logical flag

Fixed with logical flag

(3 EI3~EIB~ G

Fixed with logical flag

Fixed with logical flag

Fixed with logical flag

Fixed with logical flag

e
™

Fixed with logical flag

Fixed with logical flag

Fixed with logical flag

b is logically deleted so we
Q need to retry!

To complete the picture

* Need to do similar reasoning with all combination of object methods.

* More information in the book!

Evaluation

 Good:

* Uncontended calls don’t re-traverse

e Bad

e add() and remove() use locks

Lock-free Lists

* Next logical step
* lock-free add() and remove()

e What sort of atomics do we need?

* Loads/stores?
* RMWSs?

Lock-free Lists

(T3> 3> {1

Adding

Lock-free Lists

L[==>{a i 5=>(b__

Adding

Find the location

0

Lock-free Lists

L[==>{a i 5=>(b__

Find the location

Adding

create “c”

Lock-free Lists

L[==>{a i 5=>(b__

Find the location

Adding

create “c”

insert “c”

Lock-free Lists

Ll [==>{a i 5=>(b8__

Find the location

Adding

create “c”

insert “c”

Lock-free Lists

Ll [==>{a i 5=>(b8__

Find the location

Adding

create “c”

insert “c”

Can this just
be a reqgular store?

Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

create “c”

insert “c”

Can this just
be a reqular store?

Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

create “c”

insert “c”

Can this just
be a reqular store?

Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

create “c”

DROPPED! insert “c”

Can this just
be a reqular store?

Find the location

create “d Can this just

. o_ 7
insert “d be a regular store?

Lock-free Lists

Find the location

Adding
Solution: use CAS

create “c”

DROPPED! insert “c”

Can this just
be a reqular store?

Find the location
Cache your insertion

Lock-free Lists point!

b.next==e

L[==>{a i 5=>(b__

Adding
Using CAS

Find the location
Cache your insertion

Lock-free Lists point!

b.next==e

L[==>{a i 5=>(b__

create “c”

Adding
Using CAS

Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

L[==>{a i 5=>(b__

create “c”

Adding
Using CAS

Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

[| |']-’ : E . success!

create “c”

Adding
Using CAS

Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

create “c”

Adding
Using CAS

Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

Some other
thread inserted

el
_—

create “c”

Ll [==>{a i 5=>(b__

Adding
Using CAS

Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

Some other
thread inserted
CAS will fail!

o n

create “c

Ll [==>{a i 5=>(b__

Adding
Using CAS

Only insert if your insertion Find the location
point is valid! Cache your insertion

Lock-free Lists point!

CAS(b.next, e, c);
b.next==¢

notion is being abused here: e and c will be node *

Some other
thread inserted
CAS will fail!

o n

create “c

Ll [==>{a i 5=>(b__

Adding
Using CAS

in the case of
fail, start over

Lock-free Lists

CAS enough for insert,
remove? v

Lock-free Lists

HEELE B N E. 0 B

CAS enough for insert,
remove?

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

Lock-free Lists

ensures that nobody has inserted a node
between b and c

HEELE B N E. 0 B

CAS enough for insert,
remove?

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

Lock-free Lists

Rewind

CAS enough for insert,
remove? v

Q Wants to remove ¢

LOCk—free LlStS Q wants to insert d

LI 9=>la b c e[V]

CAS enough for insert,
remove? v

Q Wants to remove ¢

LOCk—free LlStS Q wants to insert d

LI 9=>la b c e[N]

CAS enough for insert,
remove? v

Q Wants to remove ¢

LOCk—free LlStS Q wants to insert d

LI 9=>la b c e[N]

CAS enough for insert,
remove? v

Q Wants to remove ¢

wants to insert d

Lock-free Lists

CAS successfull

CAS enough for insert,
remove?

CAS successful!

Wants to remove ¢

D is dropped!

wants to insert d

Lock-free Lists

CAS successfull

CAS enough for insert,
remove?

CAS successful!

Wants to remove ¢

Solution

e Use AtomicMarkableReference
* Atomic CAS that checks not only the address, but also a bit

* We can say: update pointer if the insertion point is valid AND if the
node has not been logically removed.

wants to insert d

LOCk—free I_lStS Q Check if insertion

point is valid AND
d if Cis not logically
deleted

LI 9=>la b c e[N]

J
CAS enough for insert,
remove? v Check if insertion point
is valid. And B is not logically
deleted

Wants to remove ¢

Marking a Node

« AtomicMarkableReference class
« Java.util.concurrent.atomic package
e But we’re using a better™ language (C++)

Reference

mark bit

class AtomicMarkedNodePtr {

4

private:
atomic<node *> ptr;
public:
AtomicMarkedNodePtr (node *p) {
node * marked = p | 1;
)

ptr.store (marked

void logically delete() {

// how to store the marked bit atomically?
}

node * get ptr() {

return ptr.load() & (~1);
}

bool CAS (node *e, node *n) {
node * expected = e | 1;
node * new node = n | 1;
return atomic compare exchange (&ptr, &e, new node);

This stuff is tricky

* Focus on understanding the concepts:
* locks are easiest, but can impede performance
 fine-grained locks are better, but more difficult
* optimistic concurrency can take you far
e CAS is your friend

* When reasoning about correctness:
* You have to consider all combination of adds/removes
* thread sanitizer will help, but not as much as in mutexes
e other tools can help (Professor Flanagan is famous for this!)

This stuff is tricky

* In this class, you won’t be asked to implement anything this tricky
from scratch!

See you on Wedensday!

e Starting on module 4
* Get your midterm in!

e Work on HW 3

