
CSE113: Parallel Programming
Feb. 14, 2022

• Topics:
• C++ atomic object templates
• RMW implementations
• Continue: general concurrent sets

Announcements

• Midterm is out!
• Midterm is due today at midnight
• No late midterms will be accepted
• No guaranteed help after 5 PM
• Don’t discuss with friends or internet

• Homework 3 is out
• Due Friday at midnight
• You can start discussing results with classmates

• Grades for HW 1 are released
• You have until Tuesday

Announcements

• Last day on concurrent data structures!

• Moving onto reasoning about concurrency on Wednesday

Today’s Quiz

• Due tomorrow by midnight, please do it!

Previous quiz

Previous quiz

Previous quiz

Previous quiz

On to the lecture

• Review is baked in

Schedule

• Using atomic templates for objects in C++

• How atomics are implemented in hardware

• Lock-free concurrent set

Schedule

• Using atomic templates for objects in C++

• How atomics are implemented in hardware

• Lock-free concurrent set

C++ Atomic template

• C++ lets you wrap custom objects/types as an atomic type

• included in <atomic>

• use like this:
• atomic<int> i;
• atomic<float> f;

C++ Atomic template

• Lets you:
• load
• store
• exchange
• compare_and_swap

• It may use a lock behind the scenes!

• Examples

C++ Atomic template

• If you do this to a class, you will lose access to your methods!

• Example:

C++ Atomic template

• How to get your methods back?
• Make a local copy!

bank_account local = tylers_account.load();
local.buy_coffee();
tylers_account.store(local);

bank_account local = tylers_account.load();
local.work_one_hour();
tylers_account.store(local);

What happens when we run this?

C++ Atomic template

• How to get your methods back?
• Make a local copy!

bank_account local = tylers_account.load();
local.buy_coffee();
tylers_account.store(local);

bank_account local = tylers_account.load();
local.work_one_hour();
tylers_account.store(local);

thread 0

thread 1
thread 0 loads an account of balance 0
thread 1 loads an account of balance 0
thread 0 buys coffee (local account -1)
thread 1 works 1 hour (local account 1)
thread 0 stores local back (global balance -1)
thread 1 stores local back (global balance 1)

Consider 1 iteration
(should end with balance of 0):

C++ Atomic template

• How to get your methods back?
• Make a local copy!

bank_account local = tylers_account.load();
local.buy_coffee();
tylers_account.store(local);

bank_account local = tylers_account.load();
local.work_one_hour();
tylers_account.store(local);

thread 0

thread 1
thread 0 loads an account of balance 0
thread 1 loads an account of balance 0
thread 0 buys coffee (local account -1)
thread 1 works 1 hour (local account 1)
thread 0 stores local back (global balance -1)
thread 1 stores local back (global balance 1)

Consider 1 iteration
(should end with balance of 0):

Overall issue: memory accesses are atomic, actions are not!

C++ Atomic template

• CAS to the rescue!

• Optimistically load object and operate on it.

• Before we store, check to see if its changed

• If it has changed, try again.

• Need to do check and store atomically.

C++ Atomic template
bank_account snapshot;
bank_account update;
bool success;

do {
bank_account snapshot = tylers_account.load();
bank_account update = snapshot;
update.buy_coffee();
success = tylers_account.compare_exchange_strong(snapshot, update);
} while (success == false);

Recall atomic templates allow you to do compare and swap

bank_account snapshot;
bank_account update;
bool success;

do {
bank_account snapshot = tylers_account.load();
bank_account update = snapshot;
update.buy_coffee();
success = tylers_account.compare_exchange_strong(snapshot, update);
} while (success == false);

thread 0 loads global balance 0 (snapshots 0)

thread 1 loads global balance 0 (snapshots 0)

thread 0 buys coffee (updated account -1)

thread 1 works 1 hour (updated account 1)

thread 0 CAS updated back (global balance 0, snapshot 0, updated 1) - SUCCESS

thread 1 CAS updated back (global balance 1, snapshot 0, updated -1) - FAIL

thread 1 retries:

thread 1 loads global balance 1 (snapshots 1)

Consider 2 threads
thread 0 is buying
coffee and thread 1
is working

Question:

• Is it fair?

• What are the pros and cons of this approach?

Demo

• Performance

• How does lock freedom effect things?

Schedule

• Using atomic templates for objects in C++

• How atomics are implemented in hardware

• Lock-free concurrent set

How is CAS (and others) implemented?

• X86 has an actual instruction
• ARM and POWER are load linked store conditional

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

no other thread can access

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

thread 1:
a.store(..);

has to wait

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

thread 1:
a.store(..);

once the lock is released then we can access

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a Pros: if there is contention, the CAS
will complete successfully

thread 2:
a.store(..);

thread 1:
a.store(..);

Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

Cons: if no other threads are contending, lock
overhead is high

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

For this example consider an atomic increment

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

before we store, we have to check if there
was a conflict.

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

solution: loop until success:

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 0

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

Pros: very efficient when there is no conflicts!

Cons: conflicts are very expensive!

Spinning thread might starve (but not indefinitely)
if other threads are constantly writing.

Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

ARM implements all atomics this way!

Godbolt example

• Show compiler examples

Schedule

• Using atomic templates for objects in C++

• How atomics are implemented in hardware

• Lock-free concurrent set

Thanks to Roberto Palmieri (Lehigh University) and material
from the text book for some of the slide content/ideas.

Review our set

Set Interface

• Unordered collection of items
• No duplicates
• Methods
• add(x) put x in set
• remove(x) take x out of set
• contains(x) tests if x in set

List Node

class Node {
public:
Value v;
int key;
Node *next;

}

The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Sequential List Based Set

a c d

a b c

add(b)

remove(b)

Sequential List Based Set

a c d

b

a b c

add(b)

remove(b)

Schedule

• 3 approaches so far: each one slightly more complex

Coarse-Grained Locking

a b d

Coarse-Grained Locking

a b d

c

honk!

Coarse-Grained Locking

a b d

c
honk!

Simple but inefficient!

Lock coupling

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a c d

remove(b)

Removing a Node

a c d

remove(b)
Why hold 2 locks?

Concurrent Removes

a b c d

remove(c)
remove(b)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Uh, Oh

a c d

remove(b)
remove(c)

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)

Optimistic traversing

Optimistic: Traverse without Locking

b d ea

add(c) Aha!

Optimistic: Lock and Load

b d ea

add(c)

Optimistic: Lock and Load

b d ea

add(c)

c

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)

Data conflict!

• Red thread has the lock on a node (so it can modify the node)
• Blue thread is traversing without locks

• What do we do?

Lock-free reasoning

• Default atomic accesses are documented to be sequentially
consistent.

class Node {
public:
Value v;
int key;
Node *next;

}

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)No more data
conflict, but we do need
to reason about
interleavings and threads
concurrent threads contending
for values.

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

add(c)

c

What could go wrong?

d ea

add(c) Uh-oh

Validate – Part 1

b d ea

add(c) Yes, b still
reachable
from head

Validate Part 2
(while holding locks)

b d ea

add(c) Yes, b still
points to d

Even more difficulties

• We had to implement our own garbage collector L

Can we optimize more?

• Scan the list once?

Two step removal List

• remove()
• Scans list (as before)
• Locks predecessor & current (as before)

• Logical delete
• Marks current node as removed (new!)

• Physical delete
• Redirects predecessor’s next (as before)

Two step removal Removal

aa b c d

c

Two step removal Removal

aa b d

Present in list

c

Two step removal Removal

aa b d

Logically deleted

Two step removal Removal

aa b c d

Physically deleted

Two step removal Removal

aa b d

Physically deleted

Two step remove list

• All Methods
• Scan through locked and marked nodes

• Must still lock pred and curr nodes.

Validation

• No need to rescan list!
• Check that pred is not marked
• Check that curr is not marked
• Check that pred points to curr

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

add(c)

c

What could go wrong?

d ea

add(c) Uh-oh

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

remove(b)

Fixed with logical flag

a b d

a not
marked

Fixed with logical flag

a b d

a still
points

to b

Fixed with logical flag

a b d

Logical
delete

Fixed with logical flag

a b d

physical
delete

Fixed with logical flag

a b d

Fixed with logical flag

a b d

b is logically deleted so we
need to retry!

To complete the picture

• Need to do similar reasoning with all combination of object methods.

• More information in the book!

Evaluation

• Good:
• Uncontended calls don’t re-traverse

• Bad
• add() and remove() use locks

Lock-free Lists

• Next logical step
• lock-free add() and remove()

• What sort of atomics do we need?
• Loads/stores?
• RMWs?

a 0 0a b 0e

Adding

Lock-free Lists

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Solution: use CAS

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

success!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

rewind

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

CAS will fail!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

in the case of
fail, start over

Some other
thread inserted

CAS will fail!

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

ensures that nobody has inserted a node
between b and c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists
Rewind

Wants to remove c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

D is dropped!

Solution

• Use AtomicMarkableReference
• Atomic CAS that checks not only the address, but also a bit
• We can say: update pointer if the insertion point is valid AND if the

node has not been logically removed.

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

Check if insertion
point is valid AND
if C is not logically
deleted

Check if insertion point
is valid. And B is not logically
deleted

Marking a Node

• !"#$%&'()*(+,-.-/-)-0&- class
• !"#"$%&'($)*+)%,,-+&$"&*.') package
• But we’re using a better™ language (C++)

address F

mark bit

Reference

class AtomicMarkedNodePtr {
private:

atomic<node *> ptr;
public:

AtomicMarkedNodePtr(node *p) {
node * marked = p | 1;
ptr.store(marked);

}

void logically_delete() {
// how to store the marked bit atomically?

}

node * get_ptr() {
return ptr.load() & (~1);

}

bool CAS (node *e, node *n) {
node * expected = e | 1;
node * new_node = n | 1;
return atomic_compare_exchange(&ptr, &e, new_node);

}
}

This stuff is tricky

• Focus on understanding the concepts:
• locks are easiest, but can impede performance
• fine-grained locks are better, but more difficult
• optimistic concurrency can take you far
• CAS is your friend

• When reasoning about correctness:
• You have to consider all combination of adds/removes
• thread sanitizer will help, but not as much as in mutexes
• other tools can help (Professor Flanagan is famous for this!)

This stuff is tricky

• In this class, you won’t be asked to implement anything this tricky
from scratch!

See you on Wedensday!

• Starting on module 4

• Get your midterm in!

• Work on HW 3

