CSE113: Parallel Programming

Feb. 11, 2022

* Topics:
* General concurrent sets

Announcements

e Midterm is out!

* You have until next Monday at midnight to do it.

* Do not discuss with your classmates

* Do not google specific questions or ask on online forums

* Ask any clarifying questions as a private post on piazza

* Late tests will not be accepted (prioritize the midterm!)

* You can ask me or Reese about the midterm, not Tim or Sanya

e Homework 3 is out

* You should have everything you need by end of today
* Due next Friday by midnight

e Grades for HW 1 are released
* You have until next Tuesday to discuss any issues

Don’t expect help on Piazza
on the weekend or after 5 PM

Announcements

* You can start sharing results for HW 3 on Monday

Today’s Quiz

 Due Monday by class time. Please do it!

Previous quiz

OpenMP does NOT allow you to specify the following properties when specifying that a DOALL
loop should be executed in parallel

(O Number of threads
(O whether to use a fair mutex

(O what parallel schedule

Previous quiz

The dynamic (work-stealing) schedule in OpenMP is nearly as efficient as the static (chunking)
schedule, so you should always use dynamic in case of load imbalance

O True

O False

Previous quiz

| have started on the midterm

O True

(O False

Previous quiz

Write a few sentences about the pros and cons of using local workstealing queues over the global
implicit worklist

Review

Local worklists

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

0 1 2 3 ,
input phase

— T,

Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes
0 1 2 3 _
input phase
/ \
1 2 3 Input/output Queues

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

indexes

1 2 3

\

input phase

2 3 Input/output Queues

0
/
1
\ / output phase

thread O thread 1

Work stealing - local worklists

atomic_int finished threads(0);

void parallel loop(..., int tid, int num threads
|0Queue 0 |0Queue 1 P —HOOP (e ' -) 4
for (x = cqg[tid].deq(); x != -1; x = cq[tid].deq())
{
0 1 3 4 // dynamic work based on task
}
atomic_fetch add(&finished threads,1);
while (finished threads.load() != num threads) ({
int target = // pick a thread to steal from
int task = cqg[target].deq();
if (task != -1) {
// perform task
thread O thread 1 }
}
}

OpenMP

OpenMP

* Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
) cf1] = a[1] + b[1]; launches threads to perform

_ _ loop in parallel. Joins threads
// add -fopenmp to compile line afterward

OpenMP

* Pragma based extension to C/C++/Fortran

What about irregular loops?
#pragma omp parallel for schedule(dynamic)

for (x = 0; x < SIZE; xt++) { Schedule keyword
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + ¢c[x,V]; different types of schedules
}

}

New material

Schedule

* C++ Atomic Template

* Concurrent set
e Coarse-grained lock
 fine-grained lock
e optimistic locking

C++ Atomic template

Schedule

* C++ Atomic Template

* Concurrent set
e Coarse-grained lock
 fine-grained lock
e optimistic locking

Thanks to Roberto Palmieri (Lehigh University) and material
from the text book for some of the slide content/ideas.

Set Interface

e Unordered collection of items
* No duplicates

* We will implement this as a sorted linked list

Set Interface

e Unordered collection of items
* No duplicates

* Methods
* add (x) put xin set
* remove (x) take x out of set
e contains (x) testsif xin set

List Node

class Node {
public:
Value v;
int key;
Node *next;

The List-Based Set

G B — bl — (5

/[M\)]

Sorted with Sentinel nodes
(min & max possible keys)

Sequential List Based Set

add(b)

([3F—Gal[F—c[3—FT]

remove(b)

(T3—>(a] - b 3=—>(c]

Sequential List Based Set

add(b)
CB—»EBY>EI3—>@D
remove(b)

(T3]~ b 3—>(c]

Schedule

* C++ Atomic Template

* Concurrent set
* Coarse-grained lock
* fine-grained lock
e optimistic locking

Coarse-Grained Locking

6
([3—el3F—k[3—dD)

Coarse-Grained Locking

Coarse-Grained Locking

i
(T3>l 3+ I%»@D
MEAN
honk!!]

Simple but inefficient!

Schedule

* C++ Atomic Template

* Concurrent set
e Coarse-grained lock
* fine-grained lock
e optimistic locking

Fine-grained Locking

* Requires careful thought

* Split object into pieces
* Each piece has own lock
* Methods that work on disjoint pieces need not exclude each other

Hand-over-Hand locking

([F—Gl3—b[F—{]]

O

Hand-over-Hand locking

6

%—'@3—»@3

O

Hand-over-Hand locking

Hand-over-Hand locking

6 6

Hand-over-Hand locking

@

O

Removing a Node

HE g CIE g O g O g C1N

OO.@

Removing a Node

O

Removing a Node

6 6
B (OO g Ok g C18

Oo,

Removing a Node

6 6
el 3l 5 ([3]

O,

Removing a Node

6 O

Removing a Node

6
L rlaly BEagtlB

OO.Q

Removing a Node

6
L rlaly BEagtlB

OO

Why hold 2 locks?

g

Concurrent Removes

HE g CIE g O g O g C1N

5}
O o, '

Concurrent Removes

[[F=>l—~kl5> [0l

5}
O o, '

Concurrent Removes

BB {OE 5o OE g OE gC1l

5}
O o, '

Concurrent Removes

HE g OIE o OE ;o O g C1N

5}
O o, '

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Uh, Oh

SEagth]
Oy, .

Uh, Oh

Bad news, ¢ not removed

T
L

Problem

 To delete node ¢
* Swing node b’s next field to d

al bl >[4
* Problem is,

* Data conflict:
* Someone deleting b concurrently could

direct a pointer to C an an a'

Insight

e If a node is locked
e No one can delete node’s successor

* If a thread locks
* Node to be deleted
* And its predecessor
* Then it works

Hand-Over-Hand Again

HE g CIE g O g O g C1N

OO.Q

Hand-Over-Hand Again

Hand-Over-Hand Again

OE g OE g Ok ugCll
SN

O

Hand-Over-Hand Again

Hand-Over-Hand Again

6 6

Hand-Over-Hand Again

SEagth OE gt
LS

Removing a Node

HE g CIE g O g O g C1N

;;
O o, '

Removing a Node

[[F=>l—~bl5> [0l

;;
O o, '

Removing a Node

[[F=>lEl5> [0l

;;
O o, '

Removing a Node

BB {OE 5 OE g OE gCl1l

;;
O o, '

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6 6
HE; (A5 O dOE ogCll

e
OO‘Q .

Removing a Node

acquire
Lock for

Art of Multiprocessor
Programming

Removing a Node

Cannot

acquire

lock for b
OO"Q f;\; a

Removing a Node

6 6

el %@D

Removing a Node

Proceed
to
remove(b)

Removing a Node

O,

Removing a Node

Removing a Node

[[F—(] ‘3 an
LS

Removing a Node

[[5—(l ‘3 an

Adding Nodes

e To add node e
* Must lock predecessor
 Must lock successor

* Neither can be deleted
* |s successor lock actually required?

Drawbacks

* Better than coarse-grained lock
* Threads can traverse in parallel

e Still not ideal

* Long chain of acquire/release
* Inefficient

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock();
while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();
}
pred.next = curr.next;
curr.unlock();

pred.unlock();

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock();
while (curr.value != v) {
pred = curr;
curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock(); remove(b)
pred.unlock(); c)

.,

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock(); 6

while (curr.value != v) {

pred = curr;
curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock(); I"emove(b)
pred.unlock(); O o

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next; |
curr.unlock(); remOVE(b)
pred.unlock(); ()

S

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock(); remove(b)
pred.unlock(); @)

O,

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock(); remove(b)

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock(); remove(b)

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock();
pred.unlock(); w
) Oo,

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock(); remOVG(b)

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock();

while (curr.value != v) {

pred = curr;
curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock();

pred.unlock();

Schedule

* C++ Atomic Template

* Concurrent set
e Coarse-grained lock
* fine-grained lock
* optimistic locking

How can we improve

* Acquires and releases lock for every node traversed
* If we have a long list to search, it can be bad!
* reduces concurrency (traffic jams)

Optimistic Synchronization

Assume there will be no conflicts. Check before committing. If there
was a conflict, try again.

Optimistic Synchronization

Assume there will be no conflicts. Check before committing. If there
was a conflict, try again.

What was the alternative?

Optimistic Synchronization

* Find nodes without locking

Optimistic Synchronization

* Find nodes without locking
* Lock nodes

Optimistic Synchronization

* Find nodes without locking
* Lock nodes
* Check that everything is OK

Optimistic: Traverse without Locking

Optimistic: Lock and Load

Optimistic: Lock and Load

What could go wrong?

What could go wrong?

> @3H—E

What could go wrong?

Data conflict!

* Red thread has the lock on a node (so it can modify the node)
* Blue thread is traversing without locks

e What do we do?

Data conflict!

* Red thread has the lock on a node (so it can modify the node)
* Blue thread is traversing without locks

* What do we do? We decided that locking when traversing is too
expensive.

Lock-free reasoning

 \We can use atomic variables

Lock-free reasoning

* Default atomic accesses are documented to be sequentially
consistent.

class Node {
public:
Value v;
int key;
Node *next;

Lock-free reasoning

* Default atomic accesses are documented to be sequentially
consistent.

class Node {

public:
Value v;
int key;
atomic<Node*> next;

Create an atomic pointer type using C++ templates

Lock-free reasoning

* Default atomic accesses are documented to be sequentially
consistent.

void traverse (node *n) {
while (n->next !'= NULL) {
n = n->next;
}
}

Lock-free reasoning

* Default atomic accesses are documented to be sequentially
consistent.

void traverse (node *n) {
while (n->next.load() '= NULL) {
n = n->next.load() ;

}
}

What could go wrong?

What could go wrong?

> @3H—E

What could go wrong?

No more data
conflict, but we do need
to reason about
interleavings and threads
concurrent threads contending
for values.

What could go wrong?

What could go wrong?

What could go wrong?

<N
(3—GD |(mm| @z—eD

Uh-oh
O QQ

Validate — Part 1

; : d[F=>(e])

Yes, b still
reachable
from head

What happens if failure?

e |deas?

What happens if failure?

* Could try to recover? Back up a node?
* Very tricky!
* Just start over!

What happens if failure?

* Could try to recover? Back up a node?
* Very tricky!
* Just start over!

* Private method:
* try_remove
* remove loops on try_remove until it succeeds

What about deletion?

Can threads that remove a node delete it?

Can threads that remove a node delete it?

Can threads that remove a node delete it?

6 6 delete b?

Can threads that remove a node delete it?

still on b!

Our own garbage collector

Java’s garbage collection will remove b

@[3—>(e[]

We are using a better™ language though...

maintain a list to delete:

Our own garbage collector

(T3—E1]
\/'EB—>ED

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete: ED

Our own garbage collector

([l [d[3—>{e]]

Java’s garbage collection will remove b
remove(e)
We are using a better™ language though... =

maintain a list to delete: ED

Our own garbage collector

([3—>@l]
\—/'@D

Java’s garbage collection will remove b
remove(e)
We are using a better™ language though... =

maintain a list to delete: [bl][el]

Our own garbage collector

i Garbage collector lock:

LIRN

maintain a list to delete: [bl][el]

Our own garbage collector

i Garbage collector lock:

([3—>@l]
¥_/"@D

Similar to a reader/writer lock:
Allows an arbitrary number of threads that operate on the list @)
Only 1 garbage collector thread
Erases the list of nodes

maintain a list to delete: [bl][el]

Garbage collector lock

* Many strategies!
* A big research area ~10 years ago

e Strat 1: Threads always try once to take the garbage collector lock:
* if failed, no worries, the next operation will get a chance
* if succeeded, then there was no contention
e can starve garbage collection

 Strat 2: Wait until size grows to a threshold:
* Wait on the lock (hope for a fair implementation!)
* Can cause performance spikes

Back to the linked list

What if 2 threads try to add a node in the same position?

What Else Could Go Wrong?

What Else Coould Go Wrong?

What Else Coould Go Wrong?

What Else Could Go Wrong?

What Else Could Go Wrong?

Validation passes!

(T3> (@l-

Validate Part 2
(while holding locks)

Yes, b still
points to d

Summary

* We traverse without lock
* Traversal may access nodes that are locked
* Its okay because we have atomic pointers!

* We might traverse deleted nodes
* |ts okay because we validate after we obtain locks

* Two validations:
* our node is still reachable (it was not deleted)
* Qur insertion point is still valid (no thread has inserted in the meantime)

 We don’t actually free node memory, but we put them in a list to be freed
later

Enjoy your weekend!

* On Monday: making the list lock-free!
* One extra lecture on module 3

* | really should be feeling better by Monday
* Hopefully you have started the midterm!

e Get started on HW 2

