
CSE113: Parallel Programming
Feb. 11, 2022

• Topics: 
• General concurrent sets



Announcements 

• Midterm is out!
• You have until next Monday at midnight to do it.
• Do not discuss with your classmates
• Do not google specific questions or ask on online forums
• Ask any clarifying questions as a private post on piazza
• Late tests will not be accepted (prioritize the midterm!)
• You can ask me or Reese about the midterm, not Tim or Sanya

• Homework 3 is out
• You should have everything you need by end of today
• Due next Friday by midnight

• Grades for HW 1 are released
• You have until next Tuesday to discuss any issues

Don’t expect help on Piazza
on the weekend or after 5 PM



Announcements 

• You can start sharing results for HW 3 on Monday



Today’s Quiz

• Due Monday by class time. Please do it!



Previous quiz



Previous quiz



Previous quiz



Previous quiz



Review



Local worklists 



• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

Input/output Queues

indexes



• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

input phase

Input/output Queues

indexes



• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

0 1 2 3

input phase

Input/output Queues

indexes



• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

0 1 2 3

input phase

output phase

Input/output Queues

indexes



thread 1thread 0

Work stealing - local worklists

0 1 3 4

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

for (x = cq[tid].deq(); x != -1; x = cq[tid].deq()) 
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}



OpenMP



OpenMP

• Pragma based extension to C/C++/Fortran

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}
// add -fopenmp to compile line

launches threads to perform
loop in parallel. Joins threads
afterward



OpenMP

• Pragma based extension to C/C++/Fortran

What about irregular loops?

Schedule keyword

different types of schedules

#pragma omp parallel for schedule(dynamic)
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}



New material



Schedule

• C++ Atomic Template

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking



C++ Atomic template 



Schedule

• C++ Atomic Template

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking

Thanks to Roberto Palmieri (Lehigh University) and material 
from the text book for some of the slide content/ideas.



Set Interface

• Unordered collection of items
• No duplicates

• We will implement this as a sorted linked list



Set Interface

• Unordered collection of items
• No duplicates
• Methods
• add(x) put x in set
• remove(x) take x out of set
• contains(x) tests if x in set



List Node

class Node {
public:
Value v;
int key;
Node *next;

}



The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞



Sequential List Based Set 

a c d

a b c

add(b)

remove(b) 



Sequential List Based Set 

a c d

b

a b c

add(b)

remove(b) 



Schedule

• C++ Atomic Template

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking



Coarse-Grained Locking

a b d



Coarse-Grained Locking

a b d

c



honk!

Coarse-Grained Locking

a b d

c
honk!

Simple but inefficient!



Schedule

• C++ Atomic Template

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking



Fine-grained Locking

• Requires careful thought
• Split object into pieces
• Each piece has own lock
• Methods that work on disjoint pieces need not exclude each other



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Hand-over-Hand locking

a b c



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a b c d

remove(b)



Removing a Node

a c d

remove(b)



Removing a Node

a c d

remove(b)
Why hold 2 locks?



Concurrent Removes

a b c d

remove(c)
remove(b)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Concurrent Removes

a b c d

remove(b)
remove(c)



Uh, Oh

a c d

remove(b)
remove(c)



Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)



Problem

• To delete node c
• Swing node b’s next field to d

• Problem is,
• Data conflict:
• Someone deleting b concurrently could 

direct a pointer to c

ba c

ba c



Insight

• If a node is locked
• No one can delete node’s successor

• If a thread locks
• Node to be deleted
• And its predecessor
• Then it works



Hand-Over-Hand Again

a b c d

remove(b)



Hand-Over-Hand Again

a b c d

remove(b)



Hand-Over-Hand Again

a b c d

remove(b)



Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!



Hand-Over-Hand Again

a b c d

remove(b)
Found 

it!



Hand-Over-Hand Again

a c d

remove(b)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Removing a Node

a b c d

remove(b)
remove(c)



Art of Multiprocessor 
Programming 73

Removing a Node

a b c d

Must 
acquire 
Lock for 

b

remove(c)



Removing a Node

a b c d

Cannot 
acquire 

lock for b

remove(c)



Removing a Node

a b c d

Wait!
remove(c)



Removing a Node

a b d

Proceed 
to 

remove(b)



Removing a Node

a b d

remove(b)



Removing a Node

a b d

remove(b)



Removing a Node

a d

remove(b)



Removing a Node

a d



Adding Nodes

• To add node e
• Must lock predecessor
• Must lock successor

• Neither can be deleted
• Is successor lock actually required?



Drawbacks

• Better than coarse-grained lock
• Threads can traverse in parallel

• Still not ideal
• Long chain of acquire/release
• Inefficient



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a c

remove(b)



void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a c



Schedule

• C++ Atomic Template

• Concurrent set
• Coarse-grained lock
• fine-grained lock
• optimistic locking



How can we improve

• Acquires and releases lock for every node traversed
• If we have a long list to search, it can be bad!
• reduces concurrency (traffic jams)



Optimistic Synchronization

Assume there will be no conflicts. Check before committing. If there 
was a conflict, try again.



Optimistic Synchronization

Assume there will be no conflicts. Check before committing. If there 
was a conflict, try again.

What was the alternative?



Optimistic Synchronization

• Find nodes without locking



Optimistic Synchronization

• Find nodes without locking
• Lock nodes



Optimistic Synchronization

• Find nodes without locking
• Lock nodes
• Check that everything is OK



Optimistic: Traverse without Locking

b d ea

add(c) Aha!



Optimistic: Lock and Load

b d ea

add(c)



Optimistic: Lock and Load

b d ea

add(c)

c



What could go wrong?

b d ea

add(c) Aha!



What could go wrong?

b d ea

add(c)



What could go wrong?

b d ea

remove(b)



Data conflict!

• Red thread has the lock on a node (so it can modify the node)
• Blue thread is traversing without locks

• What do we do?



Data conflict!

• Red thread has the lock on a node (so it can modify the node)
• Blue thread is traversing without locks

• What do we do? We decided that locking when traversing is too 
expensive.



Lock-free reasoning

• We can use atomic variables



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

class Node {
public:
Value v;
int key;
Node *next;

}



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

class Node {
public:
Value v;
int key;
atomic<Node*> next;

}

Create an atomic pointer type using C++ templates



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

void traverse(node *n) {
while (n->next != NULL) {
n = n->next;

}
}



Lock-free reasoning

• Default atomic accesses are documented to be sequentially 
consistent.

void traverse(node *n) {
while (n->next.load() != NULL) {
n = n->next.load();

}
}



What could go wrong?

b d ea

add(c) Aha!



What could go wrong?

b d ea

add(c)



What could go wrong?

b d ea

remove(b)No more data
conflict, but we do need
to reason about
interleavings and threads
concurrent threads contending
for values.



What could go wrong?

b d ea

add(c)



What could go wrong?

b d ea

add(c)

c



What could go wrong?

d ea

add(c) Uh-oh



Validate – Part 1

b d ea

add(c) Yes, b still 
reachable 
from head



What happens if failure?

• Ideas?



What happens if failure?

• Could try to recover? Back up a node?
• Very tricky!
• Just start over!



What happens if failure?

• Could try to recover? Back up a node?
• Very tricky!
• Just start over!

• Private method:
• try_remove
• remove loops on try_remove until it succeeds



What about deletion?



Can threads that remove a node delete it?

b d ea

add(c)



b d ea

remove(b)

Can threads that remove a node delete it?



b d ea

remove(b)

delete b?

Can threads that remove a node delete it?



b d ea

add(c)

still on b!

Can threads that remove a node delete it?



Our own garbage collector

b d ea

remove(b)
Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:



Our own garbage collector

d ea

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete: b



Our own garbage collector

d ea

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:

remove(e)

b



Our own garbage collector

da

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:

remove(e)

eb



Our own garbage collector

da

maintain a list to delete: b e

add(c)

Garbage collector lock:



Our own garbage collector

da

maintain a list to delete: b e

add(c)

Garbage collector lock:

Similar to a reader/writer lock:
Allows an arbitrary number of threads that operate on the list
Only 1 garbage collector thread
Erases the list of nodes

Clean
up?



Garbage collector lock

• Many strategies!
• A big research area ~10 years ago

• Strat 1: Threads always try once to take the garbage collector lock:
• if failed, no worries, the next operation will get a chance
• if succeeded, then there was no contention
• can starve garbage collection

• Strat 2: Wait until size grows to a threshold:
• Wait on the lock (hope for a fair implementation!)
• Can cause performance spikes



Back to the linked list

What if 2 threads try to add a node in the same position?



What Else Could Go Wrong?

b d ea

add(c) Aha!



What Else Coould Go Wrong?

b d ea

add(c)
add(b’)



What Else Coould Go Wrong?

b d ea

add(c)
add(b’)b’



What Else Could Go Wrong?

b d ea

add(c)
b’



What Else Could Go Wrong?

b d ea

add(c)

c
Validation passes!



Validate Part 2
(while holding locks)

b d ea

add(c) Yes, b still 
points to d



Summary

• We traverse without lock
• Traversal may access nodes that are locked
• Its okay because we have atomic pointers!

• We might traverse deleted nodes
• Its okay because we validate after we obtain locks
• Two validations: 

• our node is still reachable (it was not deleted)
• Our insertion point is still valid (no thread has inserted in the meantime)

• We don’t actually free node memory, but we put them in a list to be freed 
later



Enjoy your weekend!

• On Monday: making the list lock-free!
• One extra lecture on module 3

• I really should be feeling better by Monday

• Hopefully you have started the midterm!

• Get started on HW 2


