
CSE113: Parallel Programming
May 6, 2021

• Topic: Concurrent Objects 4
• Finishing up linked list
• Reading/Writing Queues
• Synchronous Producer Consumer
• Async Producer Consumer

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

Announcements

• Busy Day (at least at midnight)!
• HW2 due today!
• Midterm due today!
• HW3 released today!
• HW1 Grades released today!

• Gan had office hours this morning
• Reese will have them after class

Announcements

• Erica is running a study on parallel programming:
• Sign up if you are interested!

• We won’t finish module 3 today:
• Next week we’ll discuss work stealing
• I will still plan to release the HW today

• May 20 will be guest lecture:
• Hugues Evrard will discuss message-passing concurrency
• Alistair Donaldson will discuss testing GPU compilers

Quiz

Quiz

• Discuss Answers

Schedule

• Finish up linked-list

• Concurrent Queues
• Input/Output Queues
• Synchronous Producer/Consumer Queue
• Async Producer/Consumer Queue

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

ensures that nobody has inserted a node
between b and c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists
Rewind

Wants to remove c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

D is dropped!

Solution

• Use AtomicMarkableReference
• Atomic CAS that checks not only the address, but also a bit
• We can say: update pointer if the insertion point is valid AND if the

node has not been logically removed.

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

Check if insertion
point is valid AND
if C is not logically
deleted

Check if insertion point
is valid. And B is not logically
deleted

Marking a Node

• !"#$%&'()*(+,-.-/-)-0&- class
• !"#"$%&'($)*+)%,,-+&$"&*.') package
• But we’re using a better™ language (C++)

address F

mark bit

Reference

class AtomicMarkedNodePtr {
private:

atomic<node *> ptr;
public:

AtomicMarkedNodePtr(node *p) {
node * marked = p | 1;
ptr.store(marked);

}

void logically_delete() {
// how to store the marked bit atomically?

}

node * get_ptr() {
return ptr.load() & (~1);

}

bool CAS (node *e, node *n) {
node * expected = e | 1;
node * new_node = n | 1;
return atomic_compare_exchange(&ptr, &expected, new_node);

}
}

Lazy node removal

bCAS

Removing a Node

a c d

remove
c

Removing a Node

a b d

remove
b

remove
c

c

failed

CAS CAS

Removing a Node

a b d

remove
b

remove
c

c

Two options:
Try removing C again
or...

Removing a Node

a d

remove
b

remove
c

c stays in the list as logically deleted

Removing a Node

a d

remove
b

remove
c

c stays in the list as logically deleted

Traversing the List

• Q: what do you do when you find a “logically” deleted node in your
path?

• A: finish the job.
• CAS the predeqessor’s next field
• Proceed (repeat as needed)

Lock-Free Traversal

a b c d
CAS

Uh-oh

pred currpred curr

Further Reading

• Chapter 9 goes over implementations in detail.
• This is tricky stuff! Please read to get a different perspective!

• Skip Lists
• Binary search over linked list (log(n) lookup time)
• Chapter 14 of the book

Performance

• Issues:
• Lazy removal makes benchmarking traversals very tricky
• Garbage collection makes benchmarking very tricky

Some performance results

From: A Lazy Concurrent List-Based Set Algorithm: 2005
publication from the textbook authors research group

High Contains Ratio

Lock-free

Coarse Grained
Fine Lock-coupling

Two-step removal

Low Contains Ratio

Lock-free

Coarse Grained
Fine Lock-coupling

Two-step removal

noisy!

Low Contains Ratio

Lock-free

Coarse Grained
Fine Lock-coupling

Two-step removal

noisy!

Which one should you use?

Schedule

• Finish up linked-list

• Concurrent Queues
• Input/Output Queues
• Synchronous Producer/Consumer Queue
• Async Producer/Consumer Queue

Concurrent Queues

• New API
• List of items, accessed in a first-in first-out (FIFO) way
• duplicates allowed
• Methods
• enq(x) put x in the list at the head
• deq() remove the item at the tail of the queue and return it.
• size() returns how many items are in the queue

Concurrent Queues

• General implementation given in Chapter 10 of the book.
• Similar types of reasoning as the linked list
• Lots of reasoning about node insertion, node deletion
• Using atomic RMWs (CAS) in clever ways

• We will think about specialized queues
• Implementations can be simplified!

Input/Output Queues

• Queue in which multiple threads read (deq), or write (enq), but not
both.

• Why would we want a thing?

• Computation done in phases:
• First phase prepares the queue (by writing into it)
• All threads join
• Second phase reads values from the queue.

Input/Output Queues

• Example: Information flow in graph applications:

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

source 0 source 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

Thread 0 Thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

queue 1

queue 0

input

output

Thread 0 Thread 1

info
info

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5

queue 1

queue 0

input

output

Thread 0 Thread 1

info
info

concurrent enqueues!

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6

queue 1

queue 0

input

output

Thread 0 Thread 1

info info

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

Thread 0 Thread 1

info

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

0 1

2 5 3 6 4

queue 1

queue 0

input

output

Thread 0 Thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

join all nodes

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

swap!

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0
thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0
thread 1

info
info

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0
thread 1

info
info

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

info

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0 thread 1

info

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

thread 0

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

2 5 3 6 4

queue 1

queue 0

input

output

Input/Output Queues

• Example: Information flow in graph applications:

0

2 3 4

1

5 6

7 8
9

7 9 8

queue 1

queue 0

input

output

and so on...

Implementation

Implementation

Allocate a contiguous array

Pros:
?

Cons:
?

Implementation

Allocate a contiguous array

Pros:
+ fast!
+ we can use indexes instead of addresses

Cons:
- need to reason about overflow!

Implementation

head

Implementation

What happens if a thread wants
to add an element?head

Implementation

What happens if a thread wants
to add an element?

Think sequentially:

head

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment head

head

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
*reserve a space - increment tail

reserved!

head

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment head
* add the element

reserved!

head

16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment head
* add the element

head

16

Implementation

What happens if a thread wants
to add an element?

Think sequentially:
* reserve a space - increment head
* add the element

done!

head

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

Two threads cannot reserve the same space!
We’ve seen this before

head

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&head, 1);

head

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&head, 1);

Thread 0:
enq(6);

Thread 1:
enq(7);

head

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&head, 1);

reserved
T0

reserved
T1

Thread 0:
enq(6);

Thread 1:
enq(7);

head

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&head, 1);

reserved
T0

reserved
T1

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

head

7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&head, 1);

reserved
T0

does it matter which order
threads add their data?

Thread 0:
enq(6);

Thread 1:
enq(7);

head

6 7

Implementation

What happens if a thread wants
to add an element?

Think concurrently:

reserved_index = atomic_fetch_add(&head, 1);

reserved
T0

does it matter which order
threads add their data? No!
Because there are no deqs!

Thread 0:
enq(6);

Thread 1:
enq(7);

head

class InputOutputQueue {
private:

atomic_int head;
int list[SIZE];

public:
InputOutputQueue() {

head = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&head, 1);
list[reserved_index] = x;

}

int size() {
return head.load();

}
}

How to protect against overflows?

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

head

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

headtail

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

headtail

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&tail, 1);

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

headtail

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&tail, 1);

Thread 0:
deq();

Thread 1:
deq();

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

headtail

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&tail, 1);

Thread 0:
deq();

Thread 1:
deq();

data index
T0

data index
T1

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

headtail

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&tail, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read
data

What about Input?

• Now we only do deqs

6 7 8 9 10 11 12

headtail

What happens if a thread wants
to add an element?

Think concurrently:

data_index = atomic_fetch_add(&tail, 1);

Thread 0:
deq(); // reads 6

Thread 1:
deq(); // reads 7

T0 read data

T1 read
data

How to implement
a stack?

class InputOutputQueue {
private:

atomic_int head;
atomic_int tail;
int list[SIZE];

public:
InputOutputQueue() {

head = tail = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&head, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&tail, 1);
return list[reserved_index];

}

int size() {
return head.load();

}
}

class InputOutputQueue {
private:

atomic_int head;
atomic_int tail;
int list[SIZE];

public:
InputOutputQueue() {

head = tail = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&head, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&tail, 1);
return list[reserved_index];

}

int size() {
return head.load();

}
}

how about size?

class InputOutputQueue {
private:

atomic_int head;
atomic_int tail;
int list[SIZE];

public:
InputOutputQueue() {

head = tail = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&head, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&tail, 1);
return list[reserved_index];

}

int size() {
return head.load() - tail.load();

}
}

how about size?

how do we reset?

class InputOutputQueue {
private:

atomic_int head;
atomic_int tail;
int list[SIZE];

public:
InputOutputQueue() {

head = tail = 0;
}

void enq(int x) {
int reserved_index = atomic_fetch_add(&head, 1);
list[reserved_index] = x;

}

void deq() {
int reserved_index = atomic_fetch_add(&tail, 1);
if (reserved_index > SIZE) throw exception
return list[reserved_index];

}

int size() {
return head.load() - tail.load();

}
}

how about size?

how do we reset?

does the list need
to be atomic?

Schedule

• Finish up linked-list

• Concurrent Queues
• Input/Output Queues
• Synchronous Producer/Consumer Queue
• Async Producer/Consumer Queue

5 minute break

Producer Consumer Queues

• 1 enq, 1 deq
• enq’er cannot deq
• deq cannot enq

• Example: printf:
• your program equeues values to print
• the terminal process dequeues values and prints them

Synchronous Producer Consumer Queues

• First implementation:
• Synchronous
• Slow
• Good for debugging

Synchronous Producer Consumer Queues

• First implementation:
• Synchronous
• Slow
• Good for debugging

• enq does not return until value is deq’ed

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

wait
returns 7

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

both can continue

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();

wait

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();7

wait
pushes 7

Synchronous Producer Consumer Queues

Producer Thread
sleep();
enq(7);

Consumer Thread
deq();7

returns 7
pushes 7

They both can continue

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appear

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

first
prepare
the box

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

then set
the flag

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();7

can the consumer just read?
Needs to wait for a value to appearflag

spin waiting for the flag to turn green

then set
the flag

now the consumer can read from the box!

Synchronous Producer Consumer Queues

Producer Thread
enq(7); Consumer Thread

deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7); Consumer Thread

deq();
deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

what happens
when there are
two deqs?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box

}
}

what happens in the
next deq?

How to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}what happens in the

next deq?

How to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

waiting like we are
supposed to

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

reset (now with extra enq)

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

extra enq

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

8

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

7 was dropped!

how to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

8

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

7 was dropped!

how to fix?

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

reset

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Synchronous Producer Consumer Queues

Producer Thread
enq(7);
enq(8);

Consumer Thread
deq();
deq();

7

flag

class SyncQueue {
private:

atomic_int box;
atomic_bool flag;

public:
void enq(int x) {

// put value in box
// set flag
// wait for flag to be reset

}
void deq() {

// wait for flag to be set
// read from the box
// reset flag

}
}

Schedule

• Finish up linked-list

• Concurrent Queues
• Input/Output Queues
• Synchronous Producer/Consumer Queue
• Async Producer/Consumer Queue

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

7

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 7

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

8 79

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

89

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 8

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

finishes

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 7

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

9 810

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

910

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

no waiting for producer (while there is room)

when there is no room, the queue will wait

returns 8

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10 9

returns 9

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();

10

Producer Consumer Queues

• Asynchronous:

Producer Thread
enq(7);
enq(8);
enq(9);
enq(10);

Consumer Thread
deq();
deq();
deq();
deq();
deq();

blocks when there is nothing in the
queue

Producer Consumer Queues

• How do we implement it?

Producer Consumer Queues

• Start with a fixed size array

Producer Consumer Queues

• Start with a fixed size array

We will use what is called a circular buffer method

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

3

...

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

we will assume modular
arithmetic:

if x = (SIZE - 1) then
x + 1 == 0;

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail:

enq to the head, deq from the
tail

tail

head

valid items in the
queue

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

tail

head

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

tail

head

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head == tail?

but then
how to tell
full queue from
empty?

tail

head

3

Producer Consumer Queues

• Start with a fixed size array

conceptually it is a circle

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

indexes will
circulate in
order and
wrap around

Two variables to keep track of
where to deq and enq:

head and tail

Empty queue is when
head == tail

Full queue is when
head + 1 == tail

tail

head

...

wasting one
location, but its okay...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
}

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...

tail

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

This looks like the two threads don’t even share
head and tail! What is missing?

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// get value at tail
// increment tail

}
}

what happens if we try to dequeue here?

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

similarly for enqueue
but why can’t we enqueue?

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

...tail

head

3

incrementing the head would make it empty!

enq spins for a full queue

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

tail

head

...

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

we need to wait for there
to be room

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the
queue

enq spins for a full queue

class ProdConsQueue {
private:

atomic_int head;
atomic_int tail;
int buffer[SIZE];

public:
void enq(int x) {

// wait for their to be room
// store value at head
// increment head

}
int deq() {

// wait while queue is empty
// get value at tail
// increment tail

}
}

Other questions:

0
1

2

(SIZE -1)(SIZE -2)
(SIZE -3)

...

3

...tail

head

valid items in the
queue

Next week

• Workstealing!

• Good luck on the exam and HW!

