
CSE113: Parallel Programming
May 4, 2021

• Topic: Concurrent Objects 3
• Optimistic Linked List
• Lazy Linked List
• Lock Free Linked List

a b d

c

From The Art of Multiprocessor Textbook Slides

Announcements

• Midterm is out
• So far no questions need answering in the discussion thread
• We have been answering questions in Piazza and email
• A few people have even submitted! Awesome!
• Due on Thursday

• HW2 is out
• Sounds like things are going okay. Visit us in office hours or ask on Piazza if

you have questions
• You can start to compare results (but not code)
• Also Due on Thursday

Announcements

• Office hours this week:
• Private because of midterm. We can do an open session for HW3.
• Sign up sheet will go live at 12:30 on Wednesday. Do not sign up before hand!
• Docker questions are best for Reese or Gan
• Gan’s office hours will be on Thursday again this week.

• HW3 will be assigned on Thursday.
• Due on the 20th

• HW1 grades will be released on Thursday.
• You need to discuss any discrepancies with us within 2 weeks

Announcements

• Erica Kleinman (phd student in computational media) has a short
announcement

• https://docs.google.com/forms/d/e/1FAIpQLSfU-
Zf7553T_v7qNCi0mYIR_bqc_vbUDoFjqhFXOdkwjASHqw/viewform
• I’ll post this in chat too

Quiz

Quiz

• Discuss answers

Schedule

• Review linked list set interface

• Optimistic locking implementation

• Two-step remove implementation (lazy deletion)

• Lock free implementation

Schedule

• Review linked list set interface

• Optimistic locking implementation

• Two-step remove implementation (lazy deletion)

• Lock free implementation

Set Interface

• Unordered collection of items
• No duplicates

Thanks to Roberto Palmieri (Lehigh University) and material from the
text book for some of the slide content/ideas.

Set Interface

• Unordered collection of items
• No duplicates
• Methods
• add(x) put x in set
• remove(x) take x out of set
• contains(x) tests if x in set

List Node

class Node {
public:
Value v;
int key;
Node *next;

}

The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Sequential List Based Set

a c d

a b c

add(b)

remove(b)

Sequential List Based Set

a c d

b

a b c

add(b)

remove(b)

Two approaches so far:

Coarse-Grained Locking

a b d

c

honk!

Coarse-Grained Locking

a b d

c
honk!

Simple but inefficient!

Second approach

• Fine grained locking

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a c d

remove(b)

How can we improve

• Acquires and releases lock for every node traversed
• If we have a long list to search, it can be bad!
• reduces concurrency (traffic jams)

Schedule

• Review linked list set interface

• Optimistic locking implementation

• Two-step remove implementation (lazy deletion)

• Lock free implementation

Optimistic Synchronization

We’ve seen this term before... Where?

Optimistic Synchronization

We’ve seen this term before... Where?

Assume there will be no conflicts. Check before committing. If there
was a conflict, try again.

Optimistic Synchronization

We’ve seen this term before... Where?

Assume there will be no conflicts. Check before committing. If there
was a conflict, try again.

What was the alternative?

Optimistic Synchronization

• Find nodes without locking

Optimistic Synchronization

• Find nodes without locking
• Lock nodes

Optimistic Synchronization

• Find nodes without locking
• Lock nodes
• Check that everything is OK

Optimistic: Traverse without Locking

b d ea

add(c) Aha!

Optimistic: Lock and Load

b d ea

add(c)

Optimistic: Lock and Load

b d ea

add(c)

c

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)

Data conflict!

• Red node has the lock on a node (so it can modify the node)
• Blue node is traversing without locks

• What do we do?

Data conflict!

• Red node has the lock on a node (so it can modify the node)
• Blue node is traversing without locks

• What do we do? We decided that locking when traversing is too
expensive.

Lock-free reasoning

• We can use atomic variables

• Recall reasoning about the mutexes

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)

Lock-free reasoning

• Default atomic accesses are documented to be sequentially
consistent.

class Node {
public:
Value v;
int key;
Node *next;

}

Lock-free reasoning

• Default atomic accesses are documented to be sequentially
consistent.

class Node {
public:
Value v;
int key;
atomic<Node*> next;

}

Create an atomic pointer type using C++ templates

Lock-free reasoning

• Default atomic accesses are documented to be sequentially
consistent.

void traverse(node *n) {
while (n->next != NULL) {
n = n->next;

}
}

Lock-free reasoning

• Default atomic accesses are documented to be sequentially
consistent.

void traverse(node *n) {
while (n->next.load() != NULL) {
n = n->next.load();

}
}

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)No more data
conflict, but we do need
to reason about
interleavings and threads
concurrent threads contending
for values.

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

add(c)

c

What could go wrong?

d ea

add(c) Uh-oh

Validate – Part 1

b d ea

add(c) Yes, b still
reachable
from head

What happens if failure?

• Ideas?

What happens if failure?

• Could try to recover? Back up a node?
• Very tricky!
• Just start over!

What happens if failure?

• Could try to recover? Back up a node?
• Very tricky!
• Just start over!

• Private method:
• try_remove
• remove loops on try_remove until it succeeds

What about deletion?

Can threads that remove a node delete it?

b d ea

add(c)

b d ea

remove(b)

Can threads that remove a node delete it?

b d ea

remove(b)

delete b?

Can threads that remove a node delete it?

b d ea

add(c)

still on b!

Can threads that remove a node delete it?

Our own garbage collector

b d ea

remove(b)
Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:

Our own garbage collector

d ea

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete: b

Our own garbage collector

d ea

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:

remove(e)

b

Our own garbage collector

da

Java’s garbage collection will remove b

We are using a better™ language though...

maintain a list to delete:

remove(e)

eb

Our own garbage collector

da

maintain a list to delete: b e

add(c)

Garbage collector lock:

Our own garbage collector

da

maintain a list to delete: b e

add(c)

Garbage collector lock:

Similar to a reader/writer lock:
Allows an arbitrary number of threads that operate on the list
Only 1 garbage collector thread
Erases the list of nodes

Clean
up?

Garbage collector lock

• Many strategies!
• A big research area ~10 years ago

• Strat 1: Threads always try once to take the garbage collector lock:
• if failed, no worries, the next operation will get a chance
• if succeeded, then there was no contention
• can starve garbage collection

• Strat 2: Wait until size grows to a threshold:
• Wait on the lock (hope for a fair implementation!)
• Can cause performance spikes

Back to the linked list

What if 2 threads try to add a node in the same position?

What Else Could Go Wrong?

b d ea

add(c) Aha!

What Else Coould Go Wrong?

b d ea

add(c)
add(b’)

What Else Coould Go Wrong?

b d ea

add(c)
add(b’)b’

What Else Could Go Wrong?

b d ea

add(c)
b’

What Else Could Go Wrong?

b d ea

add(c)

c
Validation passes!

Validate Part 2
(while holding locks)

b d ea

add(c) Yes, b still
points to d

Pause for a breath of air

• We traverse without lock
• Traversal may access nodes that are locked
• Its okay because we have atomic pointers!

• We might traverse deleted nodes
• Its okay because we validate after we obtain locks
• Two validations:

• our node is still reachable (it was not deleted)
• Our insertion point is still valid (no thread has inserted in the meantime)

• We don’t actually free node memory, but we put them in a list to be freed
later

Further reading on optimistic list

• Implementation details in the book
• Arguments about linearizability points

How can we improve

• Most operations require two traversals:
• One to find the interesting point
• Take the locks
• and Another pass to validate

Schedule

• Review linked list set interface

• Optimistic locking implementation

• Two-step remove implementation (lazy deletion)

• Lock free implementation

Schedule

• 5 minute break:

Two step removal (lazy list)

• Like optimistic, except
• Scan once

• Key insight
• Removing nodes causes trouble
• Do it “lazily”

Two step removal List

• remove()
• Scans list (as before)
• Locks predecessor & current (as before)

• Logical delete
• Marks current node as removed (new!)

• Physical delete
• Redirects predecessor’s next (as before)

Two step removal Removal

aa b c d

c

Two step removal Removal

aa b d

Present in list

c

Two step removal Removal

aa b d

Logically deleted

Two step removal Removal

aa b c d

Physically deleted

Two step removal Removal

aa b d

Physically deleted

Lazy List

• All Methods
• Scan through locked and marked nodes

• Must still lock pred and curr nodes.

Validation

• No need to rescan list!
• Check that pred is not marked
• Check that curr is not marked
• Check that pred points to curr

What could go wrong?

b d ea

add(c) Aha!

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

remove(b)

What could go wrong?

b d ea

add(c)

What could go wrong?

b d ea

add(c)

c

What could go wrong?

d ea

add(c) Uh-oh

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

add(c)

Fixed with logical flag

a b d

remove(b)

Fixed with logical flag

a b d

a not
marked

Fixed with logical flag

a b d

a still
points

to b

Fixed with logical flag

a b d

Logical
delete

Fixed with logical flag

a b d

physical
delete

Fixed with logical flag

a b d

Fixed with logical flag

a b d

b is logically deleted so we
need to retry!

To complete the picture

• Need to do similar reasoning with all combination of object methods.

• More information in the book!

Evaluation

• Good:
• Uncontended calls don’t re-traverse

• Bad
• add() and remove() use locks

Schedule

• Review linked list set interface

• Optimistic locking implementation

• Two-step remove implementation (lazy deletion)

• Lock free implementation

Lock-free Lists

• Next logical step
• lock-free add() and remove()

• What sort of atomics do we need?
• Loads/stores?
• RMWs?

a 0 0a b 0e

Adding

Lock-free Lists

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

a 0 0a b 0e

Adding

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Solution: use CAS

Lock-free Lists

Find the location

0c
create “c”

insert “c”

Can this just
be a regular store?

Find the location
create “d”
insert “d”

0d

Can this just
be a regular store?

DROPPED!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

success!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

rewind

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

Some other
thread inserted

CAS will fail!

a 0 0a b 0e

Adding
Using CAS

Lock-free Lists
Find the location
Cache your insertion
point!

b.next == e

create “c”

0c

Only insert if your insertion
point is valid!

CAS(b.next, e, c);

notion is being abused here: e and c will be node *

0d

in the case of
fail, start over

Some other
thread inserted

CAS will fail!

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

deletion point requires b
points to c. If that is valid
then we update to e.

seems okay...

ensures that nobody has inserted a node
between b and c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists
Rewind

Wants to remove c

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d CAS successful!

CAS successful!

D is dropped!

Solution

• Use AtomicMarkableReference
• Atomic CAS that checks not only the address, but also a bit
• We can say: update pointer if the insertion point is valid AND if the

node has not been physically removed.

a 0 0 0a b c 0e

CAS enough for insert,
remove?

Lock-free Lists

Wants to remove c

wants to insert d

0d

Check if insertion
point is valid AND
if C is not logically
deleted

Check if insertion point
is valid. And B is not logically
deleted

Marking a Node

• !"#$%&'()*(+,-.-/-)-0&- class
• !"#"$%&'($)*+)%,,-+&$"&*.') package
• But we’re using a better™ language (C++)

address F

mark bit

Reference

class AtomicMarkedNodePtr {
private:

atomic<node *> ptr;
public:

AtomicMarkedNodePtr(node *p) {
node * marked = p | 1;
ptr.store(marked);

}

void logically_delete() {
// how to store the marked bit atomically?

}

node * get_ptr() {
return ptr.load() & (~1);

}

bool CAS (node *e, node *n) {
node * expected = e | 1;
node * new_node = n | 1;
return atomic_compare_exchange(&ptr, &e, new_node);

}
}

Lazy node removal

bCAS

Removing a Node

a c d

remove
c

Removing a Node

a b d

remove
b

remove
c

c

failed

CAS CAS

Removing a Node

a b d

remove
b

remove
c

c

Two options:
Try removing C again
or...

Removing a Node

a d

remove
b

remove
c

c stays in the list as logically deleted

Traversing the List

• Q: what do you do when you find a “logically” deleted node in your
path?

• A: finish the job.
• CAS the predecessor’s next field
• Proceed (repeat as needed)

Lock-Free Traversal

a b c d
CAS

Uh-oh

pred currpred curr

Further Reading

• Chapter 9 goes over implementations in detail.
• This is tricky stuff! Please read to get a different perspective!

• Skip Lists
• Binary search over linked list (log(n) lookup time)
• Chapter 14 of the book

Performance

• Issues:
• Lazy removal makes benchmarking traversals very tricky
• Garbage collection makes benchmarking very tricky

Some performance results

From: A Lazy Concurrent List-Based Set Algorithm: 2005
publication from the textbook authors research group

High Contains Ratio

Lock-free

Coarse Grained
Fine Lock-coupling

Two-step removal

Low Contains Ratio

Lock-free

Coarse Grained
Fine Lock-coupling

Two-step removal

noisy!

Next Class

• Concurrent Queues
• Load balancing

• Midterm due!
• HW2 due!
• HW3 assigned!

• Good luck on the exam and HW!

