
CSE113: Parallel Programming
May 27, 2021

• Topic: GPUs 1
• GPU history
• Optimizing a GPU program

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

Announcements

• HW2 grades posted
• Talk to us in 1 week if you have questions/issues

• We plan to have HW3 done in ~1 week.

• HW4 is out
• Please try not to be late on this one!
• Due on Monday, June 7
• There is no guarantee that we will check Piazza on the weekend
• There is no Tyler office hours immediately before the deadline (we will do a

joint office hour this next wedesday).

Announcements

• SETs are out
• Probably don’t fill them out until after the final so you can have the full view of the

class.
• I will continue to bug you about these

• Final:
• Wendesday June 9.
• You have 1 day (Released midnight June 8, due midnight June 9)
• If you want to budget time: 4pm - 7pm is our allotted time
• Plan on duration similar to midterm
• We will be monitoring private piazza posts and emails for clarification questions
• Late finals will not be accepted!

Announcements

• The rest of the quarter:
• 2 lectures about GPUs
• 1 lecture about distributed computing

• If you are interested in GPU programming:
• CUDA by example is a great book!
• Linked to in the course material
• IF you are interested and IF you do not have an Nvidia GPU, message the

teach mailing list and we can try to find (limited) resources on campus

Quiz

Quiz

• Go over answer

Schedule

• GPU History

• Optimizing a GPU program

Schedule

• GPU History

• Optimizing a GPU program

GPUs: a brief history

• Hard to track everything down
• First chapter of CUDA by Example
• https://www.techspot.com/article/650-history-of-the-gpu/

• Please send me any other references you might find!

The very beginning

• Specialized hardware to
accelerate graphics rendering

• One of the first real-time
computers: Whirlwind 1 at MIT
(1951)
• Flight simulator for bombers
• vector graphics

Image from: https://ohiostate.pressbooks.pub/graphicshistory/chapter/2-1-whirlwind-and-sage/

Specialization

• Next 30 years, specialized hardware for specialized software to
display 2D graphics

• Specialized
• Typically ran specific programs
• portability was not a top priority
• Even the idea of portable ISAs were not mainstream

Multi-program devices

• 1977: Television Interface Adapter
• One of the first (and widely produced) portable (i.e. multiple program) GPUs

from: https://en.wikipedia.org/wiki/Television_Interface_Adaptor

OS integration

• 1990s: Windows: a graphical operating systems, required chips to
support 2D graphics.

• New APIs starting appearing, so write GUI programs

Windows 3 (1990)

1992

1995

https://en.wikipedia.org/wiki/DirectX

https://en.wikipedia.org/wiki/Microsoft_Windows

https://en.wikipedia.org/wiki/OpenGL

3D graphics in consoles (1993)

• Super Nintendo was not powerful enough to draw 3D graphics
• Shigeru Miyamoto really wanted a 3D flight simulator though
• Worked with a British software company to develop...

3D graphics in consoles (1993)

• Super Nintendo was not powerful enough to draw 3D graphics
• Shigeru Miyamoto really wanted a 3D flight simulator though
• Worked with a British software company to develop...

https://en.wikipedia.org/wiki/Star_Fox_(1993_video_game)

3D graphics in consoles (1993)

• Game cartridges shipped with a “mini GPU” on them:
• the Super FX

https://twitter.com/gameminesocials/status/1322946537077526528?s=20

3D graphics acceleration

• 1996 : First 3D graphics accelerator: 3Dfx Vodoo
• Discrete GPU
• Early 3D games: e.g. tomb raider
• Acquired by Nvidia in 2002

https://en.wikipedia.org/wiki/3dfx_Interactive

3D graphics acceleration

• 3D accelerators continued, many companies competing:
• Nvidia
• ATI
• 3Dfx
• and more...

• Next milestone in 1999:
• Nvidia coins the term “GPU”
• Compare with modern website

https://web.archive.org/web/20030814003456/www.nvidia.com/object/gpu.html

Programmable 3D accelerators

• 2001: Microsoft DirectX 8 required programmable vertex and pixel
shaders.

• 2001: First GPU to satisfy the requirement was Nvidia GeForce 3
• we are now on 17
• Used on the original Xbox

• Programmers started writing general programs for these GPUs:
• Present your data as a graphical input (e.g. Textures and Triangles)
• Read the output after a series of “graphics” API calls

GPGPU Programming

• 2006: Nvidia releases CUDA: programming language for their GPUs
• Supported by 8th generation CUDA devices.
• Integrated vertex and pixel cores into “shader cores”
• Support for IEEE floating point

• Soon after...

GPGPU Programming

• 2006: Nvidia releases CUDA: programming language for their GPUs
• Supported by 8th generation CUDA devices.
• Integrated vertex and pixel cores into “shader cores”
• Support for IEEE floating point

• Soon after...

• 2008: The Khronos Group launches OpenCL for cross vendor GPGPU:
• including AMD, Intel, Qualcomm

Khronos Group

• Started in 2000 by Apple as a standards body for graphics API:
• A way to unify APIs across many different vendors
• at the time: ATI, Nvidia, Intel, Sun Microsystems (and a few others)
• now: Many companies, including AMD, Nvidia, Intel, Qualcomm, ARM, Google

• OpenGL is maybe the biggest standard they maintain (for graphics)
• OpenCL is biggest for compute
• Vulkan is their new standard (will it catch on??)
• (disclosure: I am an individual contributor J)

• Apple deprecated Khronos group standards to support Metal in 2018

https://en.wikipedia.org/wiki/Khronos_Group

Where are we now?

• Nvidia CUDA is widely used, driving many HPC and ML applications
• OpenCL is used to program other GPUs (although it is not as widely

used)
• Metal is used for Apple devices
• Vulkan has momentum

• New GPGPU programming languages are on the horizon:
• WebGPU - a javascript interface to unite Metal, Vulkan and DirectX
• Its ambitious! Will it work?!
• Available in canary builds of Chrome

GPU Shortages?

• Cryptocurrency:
• 2018 reported tripling of GPU prices and shortages due to increase demand

from miners.

• Still happening will lots of market fulgurations.

• Still plenty of GPUs in your phone, laptop, etc. J

Today’s lecture

• Will use CUDA!
• It is widely used
• The programming model is straightforward

• In the future I would want to use WebGPU (more available for those
who do not have Nvidia GPUs)

Schedule

• GPU History

• Optimizing a GPU program

Schedule

• GPU History

• Optimizing a GPU program

Programming a GPU

Nvidia 940m
1.8 Billion transistors
75 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Programming a GPU

• The problem: Vector addition

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Programming a GPU

• The problem: Vector addition

• Who can do it faster?

Lets set up the CPU

• CPU code

Now for the GPU

• Its going to take a bit of work....

GPU set up

• We need to allocate and initialize memory

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

Pros and cons of each?

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

CPU GPU

System Memory

Discrete Integrated

datacenter GPUs
Big gaming GPUs

mobile SoCs

Pros and cons of each?
*Different types of memory for discrete
*Swappable for discrete
*More energy efficient for integrated
*Better memory utilization for integrated

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most still require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most still require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated

GPU set up

• GPUs come in two flavors

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

Although mobile GPUs share the system memory,
Most still require you to program as if they didn’t
have shared memory.

Why?

CPU GPU

System Memory

Integrated

In many cases, CPU-GPU communication is not fully supported
coherence, fences, and RMWs might now be supported.

GPU set up
• Our heterogeneous, parallel, programming model

CPU GPU

System Memory Graphics Memory

PCIE

host device

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

The host (CPU) will write a
C++-like program that allocates
and sets up memory on the
GPU. The host will then
call a GPU program (called) a
kernel)

host device

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate memory on a CPU?

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

x

SIZE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

d_x is a pointer, in the CPU program,
that points to memory on the GPU.

We can pass the pointer around, but
the CPU cannot access the data
i.e. d_x[0] gives an error!

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

• Our heterogeneous, parallel, programming model

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk

How does this look in code?

How does this look in code?

Nothing too exciting yet.

The GPU Program

• Write a special function in your C++ code.
• Called a Kernel
• Use the new keyword __global__
• Keywords in

• OpenCL __kernel
• Metal kernel

• Write it how you’d write any other function

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

What in the world?
special new CUDA syntax. We will talk more soon

The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Pass in pointers to memory on the device

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

Remember, GPU needs to access
its own memory

• Our heterogeneous, parallel, programming model

The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Constants can be passed in regularly

The GPU Program

Are we ready to run the program? What are we missing?

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(x, d_x, SIZE*sizeof(int),

cudaMemcpyDeviceToHost);

• Our heterogeneous, parallel, programming model

The GPU Program

Finally, we can run the GPU program!

Lets see what all the hype is about

The GPU Program

😥 It didn’t do so well...

First parallelization attempt

• Lets look at some GPU documentation.

• The Maxwell whitepaper shows a diagram of one of the GPU cores

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

woah, 32 cores!

We should parallelize our application!

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

number of threads to launch the program with

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads
thread id

First parallelization attempt

Lets try it! What do we think?

First parallelization attempt

😀 Getting better but we have a long ways to go!

GPU Memory

CPU GPU

System Memory Graphics Memory

GPU Memory

CPU GPU

System Memory Graphics Memory

CPU Memory:
Fast: Low Latency
Easily saturated: Low Bandwidth
Scales well: up to 1 TB
DDR

GPU Memory:
slow: High Latency
hard to saturate: High Bandwidth
doesn’t scale: 32 GB
GDDR, HBM

Different technologies2-lane straight highway
driven on by sports cars

16-lane highway on a windy
road driven by semi trucks

GPU Memory

CPU GPU

System Memory Graphics Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Preemption and concurrency?

GPU

Graphics Memory

warp 0

Preemption and concurrency?

GPU

Graphics Memory

warp 0 all threads load from memory.

Preemption and concurrency?

GPU

Graphics Memory

warp 0 all threads load from memory.

600 cycles!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

memory access
600 cycles

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 0
and put warp 1 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 1
and put warp 2 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 2
and put warp 0 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2

We can hide latency through
preemption and concurrency!

Hey, my memory has arrived!

preempt warp 2
and put warp 0 on

Preemption and concurrency?
But wait, I thought preemption was expensive?

Preemption and concurrency?
But wait, I thought preemption was expensive?

Registers all stay on chip

Preemption and concurrency?
But wait, I thought preemption was expensive?

dedicated scheduler logic

Preemption and concurrency?
But wait, I thought preemption was expensive?

bound on number of warps: 32

Go back to our program

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Go back to our program

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Concurrent warps

Lets try it! What do we think?

Concurrent warps

Lets try it! What do we think?

😀
Getting better!

Optimizing memory accesses

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

This is the instruction cache... Why doesn’t every core have a instruction
buffer to keep track of its program?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

instruction is fetched from the buffer
and distributed to all the cores.

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Cores can a large register file
they share expensive HW units (load/store and special functions)

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

All cores need to wait until all cores finish the first instruction

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?
More cores (share program counters)
Can be efficient to share other hardware resources

Warp execution

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Lets look closer at memory

4 cores are accessing memory. what happens if
they access the same value?

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value

a[0] a[0] a[0] a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

a[0] a[1] a[2] a[3]

a[0-4]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

a[0] a[1] a[2] a[3]

a[0-4]

stream

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[x-(x+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[y-(y+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[z-(z+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[w-(w+4)]

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

How can we fix this

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

What sort of pattern is this?

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets change this to a stride pattern

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Coalesced memory accesses

Lets try it! What do we think?

Coalesced memory accesses

Lets try it! What do we think?

😀

What else can we do?

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. My GPU has 4

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. My little GPU has 4

Multiple streaming multiprocessors
CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
No limit on blocks: launch as many as you need to map 1 thread to 1 data element

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Launch with many thread blocks

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
d_a[i] = d_b[i] + d_c[i];

}

calling the function

vector_add<<<1024,1024>>>(d_a, d_b, d_c, size);

Need to recalculate some thread ids.

#define SIZE (1024*1024)

Launch with many thread blocks

Now we have 1 thread for each element

Final Round

Nvidia 940m
1.8 Billion transistors
75 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Final Round

Nvidia 940m
1.8 Billion transistors
75 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Nearly 4x faster!!

Next week

• GPU programming #2

• Get started on HW!

