
CSE113: Parallel Programming
May 18, 2021

• Topic: Memory Consistency and Barriers
• Compiling for memory consistency
• Barrier specification
• Barrier implementation

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

Announcements

• Homework is due this Friday (May 21)
• I will do the second hour of Wednesday’s office hour as an open HW question

session
• New packet uploaded! (fixed a bug in the computation in part 2). Please download

new packet and specification
• I will open office hours around 2PM on Wednesday (wait for the announcement)

• New HW assigned this Friday by midnight
• Memory models and Barriers - you should have all the info you need for the

assignment after this lecture

• Guest lecture on Thursday!
• Message passing concurrency and GPU compiler testing

Announcements

• Midterm Answer Key
• Trying to get it out by end of this week
• I am getting 2nd dose of vaccine after class today; I appreciate your patience!

• Aiming to get HW2 grades out in 1 week

Quiz

Quiz

• Discuss answers

Schedule

• More Memory Model Examples

• Compiling Memory Models

• Barrier Specification

• Barrier Implementation

Schedule

• More Memory Model Examples

• Compiling Memory Models

• Barrier Specification

• Barrier Implementation

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

Review: are these instructions in C++?

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);
L:%t0 = load(x);

S:store(y, 1);

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);
S:store(y, 1);

respect program order

satisfy constraints

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);
S:store(y, 1);

respect program order

satisfy constraints

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

SIs this allowed in TSO?

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);
S:store(y, 1);

respect program order

satisfy constraints

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

SIs this allowed in TSO?

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);
S:store(y, 1);

respect program order

satisfy constraints

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

SIs this allowed in TSO?

we can reorder the
store! And the execution
is allowed!

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);
S:store(y, 1);

satisfy constraints

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

SIs this allowed in TSO?

what happens
behind the scenes?

put y:1 in SB

y:1 is flushed from SB

invisible

globally
visible

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);

S:store(y, 1);

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

SIs this allowed in TSO?

in practice we just show
the store happening here

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);
L:%t0 = load(x);

S:store(y, 1);

How do we disallow the relaxed
execution?

Thread 0:
S:store(x, 1);
fence;
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
fence;
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);
L:%t0 = load(x);

S:store(y, 1);

We add fences

Thread 0:
S:store(x, 1);
fence;
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
fence;
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);
L:%t0 = load(x);

S:store(y, 1);

We add fences

fence;
fence;

Thread 0:
S:store(x, 1);
fence;
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
fence;
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);

S:store(y, 1);

We add fences

fence;

fence;

Thread 0:
S:store(x, 1);
fence;
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
fence;
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);

fence;

fence;

S:store(y, 1);

respect program order

NO Different
address

NO NO

memory access 0

memory
access 1

L S

L

S

Can we do the reordering?

Thread 0:
S:store(x, 1);
fence;
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
fence;
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);

fence;

fence;

S:store(y, 1);

respect program order

NO Different
address

NO NO

memory access 0

memory
access 1

L S

L

S

Can we do the reordering?
No! You cannot move past
a fence!

Thread 0:
S:store(x, 1);
fence;
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
fence;
L:%t0 = load(x);

Can t0 == t1 == 0?

S:store(x, 1);

L:%t0 = load(y);

L:%t0 = load(x);

fence;

fence;

S:store(y, 1);

respect program order

NO Different
address

NO NO

memory access 0

memory
access 1

L S

L

S

Can we do the reordering?
No! You cannot move past
a fence!

Put fences between instructions
you do not reordered!

One more example

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency

respect program order

satisfy constraints

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about TSO?

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about TSO? NO

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO? YES

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

Now it is disallowed in PSO

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about RMO?

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO?

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO? The loads can be reordered also!

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x) L:%t0 = load(y)

What about RMO? add a fence

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

Now the relaxed behavior is disallowed

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

fence

This is a mess!

• Luckily, since 2011 we have C++ memory model:
• Provides sequential consistency

• How does this work?

Schedule

• More Memory Model Examples

• Compiling Memory Models

• Barrier Specification

• Barrier Implementation

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine

? ?

? ?

L S

L

S

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

Two options:

make sure stores
are not reordered
with later loads

make sure loads
are not reordered
with earlier stores

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

This should help you see why you
want to reduce the number of atomic
load/stores in your program

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

How about this one?

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

x.store(1); fence;
store(x,1);

Memory orders

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

Where have we seen memory_order_relaxed?

Optimizations: relaxed peeking

• What about the load in the loop? Remember the memory fence? Do
we need to flush our caches every time we peek?
• We only need to flush when we actually acquire the mutex

Relaxed memory order

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

basically no orderings except for accesses to
the same address

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

But language is more
relaxed than machine

so no fences are needed

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

Do any of the ISA memory models need any fences
for relaxed memory order?

NO Different
address

NO NO

L S

L

S

TSO

NO Different
address

NO Different
address

L S

L

S

PSO

YES Different
address

Different
address

Different
address

L S

L

S

RMO

Memory order relaxed

• Very few use-cases! Be very careful when using it
• Peeking at values (later accessed using a heavier memory order)
• Counting (e.g. number of finished threads in work stealing)
• DO NOT USE FOR QUEUE INDEXES

More memory orders: we will not discuss in class

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

• More memory orders (useful for mutex implementations):
• memory_order_acquire
• memory_order_release

• EVEN MORE memory orders (complicated: in most research it is
ommitted)
• memory_order_consume

A cautionary tale

Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

We know how lock and unlock are implemented

Thread 0:
SPIN:CAS(mutex,0,1);
display.enq(triangle0);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
display.enq(triangle1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented

What is an execution?

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

if blue goes first
it gets to complete
its critical section
while thread 1 is spinning

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go
CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model?

NO

NO

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

NO Different
address

NO Different
address

L S

L

S

what can happen in a PSO
memory model?

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model?

What just happened if this store moves?
NO

NO

Nvidia in 2015

• Nvidia architects implemented a weak memory model

• Nvidia programmers expected a strong memory model

• Mutexes implemented without fences!

Nvidia in 2015

bug found in two
Nvidia textbooks

We implemented
a side-channel attack
that made the bugs
appear more frequently

These days Nvidia has
a very well-specified
memory model!

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

NO

NO

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

NO

NO

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

fence;

No instructions
can move after
the mutex store!

NO

NO

Memory Model Strength

• If one memory model M0 allows more relaxed behaviors than another
memory model M1, then M0 is more relaxed (or weaker) than M1.

• It is safe to run a program written for M0 on M1. But not vice versa

NO Different
address

NO NO

L S

L

S

TSO

NO Different
address

NO Different
address

L S

L

S

PSO

YES Different
address

Different
address

Different
address

L S

L

S

RMO

Memory Model Strength

• Many times specifications are weaker than implementations:
• A chip might document PSO, but implement TSO:

• Why?

NO Different
address

NO NO

L S

L

S

TSO

NO Different
address

NO Different
address

L S

L

S

PSO

YES Different
address

Different
address

Different
address

L S

L

S

RMO

Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs

• Very difficult to write correct code under! PPoPP example

Memory consistency in the real world

• PSO and RMO were never implemented widely
• I have not met anyone who knows of any RMO taped out chip
• They are part of SPARC ISAs (i.e. RISC-V before it was cool)
• These memory models might have been part of specialized chips

• Interestingly:
• Early Nvidia GPUs appeared to informally implement RMO

• Other chips have very strange memory models:
• Alpha DEC - basically no rules

Memory consistency in the real world

• Modern CPUs:
• RISC-V : two specs: one similar to TSO, one similar to RMO
• Apple M1: toggles between TSO and weaker

• GPUs?
• Metal only provides relaxed atomics
• Vulkan does not provide any fences that provide S - L ordering
• We recently showed that Intel/AMD/Nvidia GPUs exhibit RMO behaviors

• Does not appear frequently in normal testing, but susceptible to side-channel attacks

Finished memory models

• Really interesting area!
• lots of complicated behaviors
• new chips/languages are exploring new models
• constant navigation between flexible hardware and programmability

Schedule

• More Memory Model Examples

• Compiling Memory Models

• Barrier Specification

• Barrier Implementation

Barriers

• Why do barriers fit into this module: “Reasoning About Parallel
Computing”?
• Relaxed Memory Models make reasoning about parallel computing HARD
• Barriers make it EASIER (at the cost of performance potentially)

• A barrier is a concurrent object (like a mutex):
• Only one method: barrier (called await in the book)

• Separates computational phases

Barrier Examples

My current favorite: particle simulation

by Yanwen Xu

Barrier Examples

My current favorite: particle simulation

time = 0 time = 1 time = 2

Barrier Examples

My current favorite: particle simulation

time = 0 time = 1 time = 2

at each time, compute
new positions for each particle
(in parallel)

Barrier Examples

My current favorite: particle simulation

time = 0 time = 1 time = 2

at each time, compute
new positions for each particle
(in parallel)

But you need to wait for all particles to be
computed before starting the next time step

barrier(); barrier();

Barrier Examples

• Deep neural networks

from http://cs231n.stanford.edu/

Barrier Examples

• Deep neural networks

from http://cs231n.stanford.edu/

barrier();
barrier();

barrier();

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 arrives

thread 2 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

thread 3 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

thread 3 arrives

now that they have all arrived

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 leaves

thread 1 leaves

thread 2 leaves

thread 3 leaves

now that they have all arrived, they can all leave

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;First, what would we expect

var to be after this program?

thread 0

thread 1

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

gives an event:
barrier arrive

barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

gives an event:
barrier arrive

barrier arrive

barrier arrive needs to wait for all threads
to arrive (similar to how a mutex request must wait for
another to release)

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1 barrier arrive

*x = 1

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1 barrier arrive

*x = 1 barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

now that all threads have arrived:
They can leave (1 event at the same time)

barrier leave

barrier leave

barrier arrive

*x = 1 barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1

This finishes the barrier execution

barrier leave

barrier leave

barrier arrive

*x = 1 barrier arrive

A more formal specification

Given a global barrier B
and a global memory location x where
initially *x = 0;Thread 0:

*x = 1;
B.barrier();

Thread 1:
B.barrier();
var = *x;

thread 0

thread 1 var = *x;

what value must this read? Any other value
possible?

barrier leave

barrier leave

barrier arrive

*x = 1 barrier arrive

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

They’ve all arrived

barrier leave

barrier leave

barrier leave

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

They’ve all arrived

barrier leave

barrier leave

barrier leave

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

barrier leave

barrier leave

barrier leave

var = *x + *y

What is this guaranteed to be?

One more example, assume initially *x = *y = 0

Thread 0:
*x = 1;
B.barrier();

Thread 1:
*y = 2;
B.barrier();

thread 0

thread 1

Thread 2:
B.barrier();
var = *x + *y;

thread 2 barrier arrive

*x = 1

*y = 2 barrier arrive

barrier arrive

barrier leave

barrier leave

barrier leave

var = *x + *y

Barrier Interval 0

sometimes called a phase

Barrier Interval 1

extending to the
next barrier leave

Barriers

• Barrier Property:
• If the only concurrent object you use in your program is a barrier (no

mutexes, concurrent data-structures, atomic accesses)

• If every barrier interval contains no data conflicts, then

your program will be deterministic (only 1 outcome allowed)

• much easier to reason about J

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

no data conflicts means that x is written to at most once
per barrier interval

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

no data conflicts means that x is written to at most once
per barrier interval

*x = 2

*x = 1

not allowed

thread 0

thread 1

thread 2 barrier leave

barrier leave

barrier leave var = *x

Barrier Interval N - 1 Barrier Interval N

Assume we are reading
from x

We are only allowed to
return one possible
value

Barrier Interval N - 2

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

barrier leave

Barrier Interval N - 3

no data conflicts means that x is written to at most once
per barrier interval

*x = 2

*x = 1

we will read from the write
from the most recent barrier interval

Schedule

• More Memory Model Examples

• Compiling Memory Models

• Barrier Specification

• Barrier Implementation

Barrier Implementation

• First attempt at implementation

class Barrier {
private:

atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
// ??

}

}

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
// What next?

}

}

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
// What next?

}

}

First handle the case where
the thread is the last thread
to arrive

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

}

Spin while there
is a thread waiting
at the barrier

Barrier Implementation
class Barrier {

private:
atomic_int counter;
int num_threads;

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;

}

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

}

Spin while there
is a thread waiting
at the barrier

Does this work?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num = 2

num_threads == 2

arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num = 2

num_threads == 2
counter == 2

arrival_num = 1

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

thread 0

thread 1

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Leaves barrier

num_threads == 2
counter == 0

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Leaves barrier

num_threads == 2
counter == 0

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

but what if the OS preempted thread 1? Or it
was asleep?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

enters next barrier

num_threads == 2
counter == 0

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

but what if the OS preempted thread 1? Or it
was asleep?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num == 1

num_threads == 2
counter == 1

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

but what if the OS preempted thread 1? Or it
was asleep?

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num == 1

num_threads == 2
counter == 1

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

Thread 1 wakes up! Doesn’t think its missed anything

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

arrival_num == 1

num_threads == 2
counter == 1

arrival_num = 1
in a perfect world,
thread 1 executes now and leaves the barrier

Thread 1 wakes up! Doesn’t think its missed anything

Both threads get stuck here!

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Ideas for fixing?

Two different barriers that alternate?

Thread 0:
B0.barrier();
B1.barrier();

Thread 1:
B0.barrier();
B1.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Ideas for fixing?

Two different barriers that alternate?

Pros: simple to implement

Cons: user has to alternate barriers

Thread 0:
B0.barrier();
B1.barrier();

Thread 1:
B0.barrier();
B1.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

Ideas for fixing?

Two different barriers that alternate?

Pros: simple to implement

Cons: user has to alternate barriers

B.barrier();
if (...) {
B.barrier();

}
B.barrier();

How to alternate these calls?

Sense Reversing Barrier

• Book Chapter 17

Next week

• Guest lecture; don’t miss it!

• Office hours:
• First hour will be by sign-up sheet
• Second hour will be open to discuss homework

• HW3 is due on Friday

