CSE113: Parallel Programming

May 13, 2021

* Topic: Finish DOALL & Memory Consistency
* DOALL schedules in OpenMP
e Sequential Consistency
 Total Store Order
* Relaxed memory models

Announcements

 HW 3 is out:

* ask questions on Piazza!
* Thanks to those who are having good discussions!
* Due date Friday May 21

* Midterm grades are released today by midnight
* Please ask questions within two weeks

e Guest lecture in 1 week!
* Message passing concurrency and testing GPU compilers

Announcements

* Thanks for those who find typos; it helps improve the slides!

Quiz

e Discuss Answers

Schedule

* Parallel schedules in OpenMP

* Memory consistency models:
 Total store order
* Relaxed memory consistency
* Examples

Schedule

* Parallel schedules in OpenMP

* Memory consistency models:
 Total store order
* Relaxed memory consistency
* Examples

Parallelize DOALL Loops with OpenMP

* We studied DOALL loops last week:
* What is a DOALL loop?

Parallelize DOALL Loops with OpenMP

* We studied DOALL loops last week:
* What is a DOALL loop?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[1];

}

Parallelize DOALL Loops with OpenMP

* We studied DOALL loops last week:
* What is a DOALL loop?

for (int i = 0; 1 < SIZE; i++) { for (int i = 0; 1 < SIZE; i++) {
a[i] = b[i] + c[1]; a[i] = b[i] + c[i+1];

} }

Parallelize DOALL Loops with OpenMP

* We studied DOALL loops last week:
* What is a DOALL loop?

for (int i = 0; 1 < SIZE; i++) { for (int i = 0; 1 < SIZE; i++) {
a[i] = b[i] + c[1]; a[i] = b[i] + c[i+1];

} }

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + a[i+1];

}

Parallelize DOALL Loops with OpenMP

* We studied DOALL loops last week:
* What is a DOALL loop?

* We talked about very complicated ways to implement parallelism
over these loops

e But what if | was to tell you that there was an easier way?

OpeniViP

* Built on top of C++ and Fortran

* First released in 1997 (way before C++11 threads!)
* Still used widely today, esp. in HPC and ML

* consists of:
* pragma based compiler directives
* runtime

OpeniVIP

* Many features
* atomic RMWs
* thread spawn and join
* shared memory

* Perhaps best known for supporting parallel DOALL loops

Why is it so popular?

for (int i = 0; 1 < SIZE;

c[i] = a[i] + b[1];

}

#pragma omp parallel for

for (int i = 0; 1 < SIZE;

c[i] = a[i] + b[1i];

}

i++)

i++)

{

{

parallelize a loop with one line!

code works with or without compiler
support!

Have to also add compile line: —-fopenmp

Lets try it out

Customization in OpenMP pragmas

#pragma omp parallel for num threads(N)
for (int i = 0; 1 < SIZE; i++) {
c[i] = a[1] + b[1];

}

Number of threads is great for running scaling experiments or reducing the load on the machine

By default OpenMP will try to saturate your machine

Customization in OpenMP pragmas

#pragma omp parallel for SCHEAGUIE(SHC)

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[1i];

Specify the parallel schedule. There are several options:
static - evenly chunks iterations across cores
dynamic - workstealing

others - we won’t get into them in the class

Can specify the chunk size with C

By default OpenMP will select a good chunk size based on your architecture!

#pragma omp parallel for num_ threads(N) SEHEaEIE(SHC)
for (int i = 0; 1 < SIZE; i++) {
c[i] = a[i] + b[1];

}

array a

array b

array c

#pragma omp parallel for num threads(4) SCHEAGIE(SHC)
for (int i = 0; 1 < SIZE; i++) {
c[i] = a[1] + b[1];

}

array a

array b

Thread O - Blue

Thread 1 -
Thread 2 - Green - - - - - -

Thread 3 -

array c

#pragma omp parallel for num threads(4) schedule(static,1)
for (int i = 0; 1 < SIZE; i++) {
c[i] = a[1] + b[1];

}

array a

array b

Thread O - Blue

Thread 1 - vellow
Thread 2 - Green -
Thread 3 - Orange

array c

#pragma omp parallel for num threads(4) schedule(static,2)
for (int i = 0; 1 < SIZE; i++) {
c[i] = a[i] + b[1];

}

array a

array b

Thread O - Blue

Thread 1 -
Thread 2 - B B B B B B B

Thread 3 -

array c

#pragma omp parallel for num threads(4) schedule(static,2)
for (int i = 0; 1 < SIZE; i++) {
c[i] = a[1] + b[1];

}

array a

array b

Thread O - Blue

Thread 1 - vellow
Thread 2 - Green -
Thread 3 - Orange

array c

What about workstealing?

#pragma omp parallel for num threads(4) schedule(dynamic)
for (int i = 0; 1 < SIZE; i++) {
c[i] = a[i] + b[1];

}

what happens when we run this?

What about workstealing?

What about a loop that has load imbalance? Recall this loop from the previous lecture

#pragma omp parallel for num threads(2) schedule(dynamic)
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}

Inner loop does a variable amount of work depending on the outer loop iteration

OpenMP takeaways

* Great for DOALL loops!

* Rapid experimentation for different schedules and parameters

* Dynamic schedules are expensive: use with caution

* Specification includes:
* RMW:s
* Mutexes

* Widely used in HPC community

Schedule

* Parallel schedules in OpenMP

* Memory consistency models:
 Total store order
* Relaxed memory consistency
* Examples

Memory Consistency

Memory Consistency

* We have been very strict about using atomic types in this class
e and the methods (.load and .store)
* why?

Architectures do very strange things with memory loads and stores
Compilers do too (but we won’t talk too much about them today)

C++ gives us sequential consistency if we use atomic types and operations
What do we remember sequential consistency from?

Sequential consistency for atomic memory

* Let’s play our favorite game:

Global variable:
atomic int x(0);
atomic int y(0);

Thread O:
X.store(l);
y.store(1l);

Thread 1:

int tO
int tl

y.load();
X.load();

Global variable:

atomic int x(0);

atomic int y(0);

Thread O: Thread 1:

x.store(1l); int t0 = y.load();
y.store(1l); int tl = x.load();

Is it possible for
t0 == 0 and tl

I
I
[

Global variable:
atomic int x(0)
atomic int y(0)

we we

Thread O: Thread 1:
X.store(1l); int t0 = y.load();
y.store(1l); int tl = x.load();
Is it possible for
t0 == 0 and tl1 ==1
x.store(1l); int t0 = y.load();
y.store(l); v int tl = x.load();

Global variable:

atomic int x(0);

atomic int y(0);

Thread O: Thread 1:

x.store(1l); int t0 = y.load();
y.store(1l); int tl = x.load();

int t0 = y.load(); . _
= |y L Is it possible for

Xx.store(l); t0 == 0 and tl1 ==
|
y.store(l);
|
int tl1 = x.load();

l

yes!

Global variable:
atomic int x(0)
atomic int y(0)

we we

Thread O: Thread 1:
X.store(1l); int t0 = y.load();
y.store(1l); int tl = x.load();
Is it possible for
t0 == 1 and tl1 == 0
x.store(1l); int t0 = y.load();
y.store(l); v int tl = x.load();

Global variable:

atomic int x(
atomic int y(

0)
0)

we we

Thread O:
X.store(l);
y.store(1l);

X.store(1l);

respect program order

y.store(1l);
|

Thread 1:

int tO
int tl

y.load(

) 7
X.load();

int tO0 y.load();

\im;\tl = xX.load();

satisfy constraints \A ¢

Is it possible for
t0 == 1 and tl1 == 0

Global variable:

atomic int x(0); Another test

atomic int y(0); Cant0 == tl1 == 0?

Thread O: Thread 1:

x.store(1l); y.store(1l);

int t0 = y.load(); int tl = x.load();

Global variable:
atomic int x(

: : 0) 7 Another test
atomic int y(0); Cant0 == tl1 == 0?
Thread O: Thread 1:
X.store(1l); y.store(1);
int t0 = y.load(); int tl = x.load();
x.store(1l); y.store(1l);
int t0 = y.load(); v int tl = x.load();

Global variable:

atomic int x(0)
atomic int y(0)

we we

Thread O:

X.store(1l);

int tO0

= y.load();

Another test
Cant0 == t1

Thread 1:

respect program order int t 1

AN

int tl1 = x.load();

X.store(1l);

int t0 = y.load();

|

y.store(1);

= X.load();

y.store(1l);

satisfy constraints

C++
* Plain atomic accesses are documented to be sequentially consistent (SC)

* Why wasn’t SC very good for concurrent data structures?
* Compossibility: two objects that are SC might not be SC when used together

* Programs contain only 1 shared memory though; no reason to compose different
main memories.

Schedule

* Parallel schedules in OpenMP

* Memory consistency models:
* Total store order
* Relaxed memory consistency
* Examples

What about ISAs?

 Remember, it is important for us to understand how our code executes on
the architecture to write high performing programs

e Lets think about x86

* |nstructions:
e MOV %t0 [x] - loadsthe value at x to register t0
e MOV [y] 1 - stores the value 1 to memory locationy

Global variable:
int x[1] = {0};

Another test
int y[1] = {0}; Cant0 == tl == 0?
Thread O: Thread 1:
mov [x], 1 mov [y], 1
mov 3t0, [V] mov 3tl, [X]

Global variable:
int x[1] = {0};

Another test
int y[1] = {0}; Cant0 == tl1 == 0?
Thread O: Thread 1:
mov [x], 1 mov [y], 1
mov 3%t0 ’ [y] respect program order mov %tl1 , [o]
mov 3tl, [X]
mov [y], 1
mov [x], 1
|
mov %tO, [Y] satisfy constraints

This is great for C++!
What about this test in x867?

Global variable:
int x[1] = {0};

. Another test
int y[1] = {0}; Cant0 == tl1 == 07
Thread O: Thread 1:
mov [x], 1 mov [y], 1
mov 3%t0 ’ [y] respect program order mov %tl1 , [o]
mov 3tl, [X]
mov [y], 1
mov [x], 1
|
mov %tO, [Y] satisfy constraints
l shouldn’t be allowed

under sequential
consistency!

This is great for C++!
What about this test in x867?

Global variable:
int x[1] = {0};

Another test
int y[1] = {0}; Cant0 == tl1 == 07
Thread O: Thread 1:
mov [x], 1 mov [y], 1
mov %$t0 ’ [Y] respect program order mov %tl1 , [o]
mov 3tl, [X]
mov [y], 1
mov [x], 1
But if we run this program on hardware: |
mov %tO, [Y] satisfy constraints

shouldn’t be allowed
under sequential
consistency!

We would see the condition satisfied! l

What is going on?!

This is great for C++!
What about this test in x867?

Thread O:

Thread 1:

mov [x], 1

mov [Yy],

1

mov %t0, [Vy]

mov %tl,

[x]

Core 1l

Thread O:

mov 3t0, [Vy]
Core O
mov [x], 1

execute first instruction
what happens to the stores?

Thread 1:

mov %tl,

[x]

Core 1

mov [y],

1

x:0

Main Memory

Thread O: Thread 1:
X86 cores contain a store
- buffer; holds stores before mov $tl, [x]
mov 3t0, [Y] going to main memory
Store Buffer Store Buffer
Core O x:1 y:1 Core 1l
x:0

Main Memory

Thread O: Thread 1:

X86 cores contain a store

buffer; holds stores before mov %tl, [X]
going to main memory

mov 3t0, [Vy]

Store Buffer Store Buffer
Core O x:1 y:1 Core 1

eventually they flush to main memory

x:0
y:0 Main Memory

Thread O: Thread 1:

X86 cores contain a store

buffer; holds stores before mov %tl, [X]
going to main memory

mov 3t0, [Vy]

Store Buffer Store Buffer
Core O x:1 Core 1

eventually they flush to main memory

x:0
y:1 Main Memory

Thread O:

mov [x], 1

mov %t0, [Vy]

rewind

Thread 1:

mov [Yy],

1

mov %tl,

[x]

Store Buffer

Core 1l

Thread O:

mov %tO0,

[V]

Core O

Store Buffer

mov [x], 1

execute first instruction

Store Buffer

Thread 1:

mov %tl,

[x]

Core 1

mov [y], 1

x:0

Main Memory

Thread O:

mov %tO0,

[v]

values get stored in SB

Thread 1:
mov %tl, [X]
Store Buffer
y:1 Core 1

Thread O:

mov %$tO0,

[¥]

Execute next instruction

Thread 1:

Store Buffer

y:1

Core 1l

mov 3¥tl, [X]

Thread O:

mov %$tO0,

[¥]

Values get loaded from memory

Thread 1:

Store Buffer

y:1

Core 1l

mov 3¥tl, [X]

Thread O:

mov %$tO0,

[¥]

we see t0

tl

0!

Thread 1:

Store Buffer

y:1

Core 1l

mov 3¥tl, [X]

Thread O:

Thread 1:

Store buffers are drained eventually

Store Buffer
y:1

Core 1l

Thread O:

Store buffers are drained eventually
but we’ve already done our loads

Thread 1:

Store Buffer

Core 1l

Our first relaxed memory execution!

* also known as weak memory behaviors
* An execution that is NOT allowed by sequential consistency

* A memory model that allows relaxed memory executions is known as
a relaxed memory model
e X86 has a relaxed memory model due to store buffering

* |f you restrict yourself to use only default atomic operations, C++ has does
NOT have a weak memory model

Litmus tests

* Small concurrent programs that check for relaxed memory behaviors

* Vendors have a long history of under documented memory
consistency models

e Academics have empirically explored the memory models
* Many vendors have unofficially endorsed academic models
* X86 behaviors were documented by researchers before Intel!

Litmus tests

This test is called “store buffering”

Thread O: Thread 1:

mov [x], 1 mov [y], 1

mov 3t0, [V] mov 3tl, [X]
Another test

Cant0 == t1 == 07

Restoring sequential consistency

* It is typical that relaxed memory models provide special instructions
which can be used to disallow weak behaviors.

* These instructions are called Fences

e The X86 fence is called mfence. It flushes the store buffer.

Thread O:

mov [xX],

1

mfence

mov %tO0,

[V]

Core O

Store Buffer

Thread 1:

mov [y], 1

mfence

mov 3tl, [X]

Store Buffer

Core 1

x:0

Main Memory

Thread O:

mfence

mov %tO0,

[V]

Core O

Store Buffer

mov [X],

1

Execute first instruction

Thread 1:

mfence

mov %tl,

[X]

Store Buffer

Core 1

mov [y],

1

x:0

Main Memory

Thread O: Thread 1:
mfence Values go into the store buffer LUEEmEE
mov %t0, [Y] mov %tl, [x]
Store Buffer Store Buffer
Core O x:1 y:1 Core 1l
x:0

Main Memory

Thread O: Thread 1:
Execute next instruction
mov %tO, [y] mov %tl, [X]
Store Buffer Store Buffer
Core O x:1 y:1 Core 1l
nfence | — mfence
x:0

Main Memory

Thread O:

mov %tO0,

[v]

store buffers are flushed

Thread 1:

mov %tl,

[x]

Store Buffer

y:1

Core 1l

Thread O:

mov %tO0,

[v]

store buffers are flushed

Thread 1:

mov %tl,

[x]

Store Buffer

Core 1l

Thread O:

execute next instruction

Thread 1:

Store Buffer

Core 1l

mov %tl,

[x]

Thread O:

values are loaded from memory

Thread 1:

Store Buffer

Core 1l

mov %tl,

[x]

Thread O: Thread 1:
We don’t get the problematic behavior: t0 != 0 and t1l
Store Buffer Store Buffer
Core O Core 1l
mov %tO, [Y] mov %tl, [X]

x:1

Main Memory

0

Next example

Thread O:

mov [x], 1

mov %t0, [X]

single thread
same address

possible outcomes:
t0=1
t0=0

Which one do you expect?

Thread O:

mov [X],

1

mov %tO0,

[x]

How does this execute?

Thread O:

execute first instruction

mov %t0, [X]

mov [x], 1

Thread O:

mov %tO0,

[x]

Store the value in the store buffer

Thread O:

Next instruction

Thread O:

Where to load??

Store buffer?
Main memory?

Thread O:

Where to load??
Threads check store buffer before going to main memory

It is close and cheap to check.

Memory Consistency

* How to specify a relaxed memory model?

e Good time for a 5 minute break!

Memory Consistency

* How to specify a relaxed memory model?

* We can do it operationally

* by constructing a high-level machine and reasoning about operations through
the machine.

* or we can talk about instructions that are allowed to "break” program order.

Global variable:

int x[1] = {0}; Another test

int y[1] = {0}; Cant0 == tl1 == 0?

Thread O: Thread 1:

mov [x], 1 mov [y], 1
mov 3t0, [V] mov 3tl, [X]

We will annotate instructions with S for store, and L for loads

Global variable:
int x[1] = {0};

Another test
int y[1] = {0}; Cant0 == tl == 0?
Thread O: Thread 1:
S:mov [x], 1 S:mov [y], 1
L:mov 3t0, [V] L:mov 3tl, [X]

We will annotate instructions with S for store, and L for loads

Global variable:
int x[1] = {0};

' Another test

int y[1] = {0}; Cant0 == tl1 == 0?

Thread O: Thread 1:

S:mov [x], 1 S:mov [y], 1
L:mov 3t0, [V] respect programorder | T o myys Btl, [X]

L:mov %tl, [X]

S:tmov [y], 1

S:mov [x], 1
|
L:mov $t0 , [y] satisfy constraints

|

Global variable:
int x[1] = {0};

' Another test

int y[1] = {0}; Cant0 == tl1 == 0?

Thread O: Thread 1:

S:mov [x], 1 S:mov [y], 1
L:mov 3t0, [V] respectprogramorder | T e mov 3t 1 y [X]

L:mov %tl, [X]

S:tmov [y], 1

S:mov [x], 1

L:mov $t0 , [y] satisfy constraints

|

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order

Global variable:
int x[1] = {0};

: Another test

int y[1] = {0}; Cant0 == tl1 == 0?

Thread O: Thread 1:

S:mov [X], 1 we can ignore this condition!! S:mov [V], 1
L:mov 3t0, [V] espectprogemorder |1 T, smov $tl, [X]

L:mov %tl, [X]

S:tmov [y], 1

S:mov [x], 1

L:mov $t0 , [y] satisfy constraints

|

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order

Global variable:
int x[1] = {0};

Another test

int y[1] = {0}; Cant0 == tl1 == 0?

Thread O: Thread 1:

S:mov [X], 1 we can ignore this condition!! S smov (v1, 1
L:mov 3t0, [V] L:mov 3tl, [X]

L:mov %tl, [X]

S:mov [x], 1

L:mov %t0, [Y]

S:tmov [y], 1

Now we can satisfy the condition!

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:mov [x], 1
L:mov 3t0, [V]

Lets peak under the hood here

Another test
Cant0 == t1 == 07

Thread 1:

we can ignore this condition!!

respect program order

S:mov [Y],
L:mov %tl,

1
[X]

L:mov %tl, [X]

S:mov [V],

1

S:mov [x], 1

L:mov $t0 , [y] satisfy constraints

Global variable:
int x[1] = {0};

: Another test

int y[1] = {0}; Cant0 == tl1 == 0?

Thread O: Thread 1:

S:mov [X], 1 we can ignore this condition!! S:mov [V], 1
L:mov 3t0, [V] espectprogemorder |1 T, smov $tl, [X]

L:mov %tl, [X]

S:tmov [y], 1

S:mov [x], 1
Lets peak under the hood here |
L:mov %t0 , [y] satisfy constraints
Global timeline is when the /

Store operation becomes visible l

to other threads

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:mov [x], 1
L:mov 3t0, [V]

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads

Another test
Cant0 == t1 == 07

we can ignore this condition!!

Thread 1:

respect program order

put y in SB
|

L:mov %tl, [X]

S:mov [x], 1
|
L:mov 3t0, [VY]

|

S:mov [Y],
L:mov %tl,

1
[X]

S:mov [V],

1

satisfy constraints

Global variable:

J:'nt X[1] = {O}; Another test

int y[1] = {0}; Cant0 == tl1 == 0?

Thread O: Thread 1:

S:mov [X], 1 we can ignore this condition!! S:mov [V], 1
L:mov 3t0, [V] out v in SB L:mov 3tl, [X]

L:mov %tl, [X]

S:mov [x], 1
Lets peak under the hood here |

L:mov 3t0, [VY]

Global timeline is when the
Store operation becomes visible
to other threads

store buffer gets flushed

S:tmov [y], 1

Questions

e Can stores be reordered with stores?

Thread O:

mov [x], 1

mov [y], 1

Thread O:

mov [y], 1 execute the first instruction

mov [x], 1

Thread O:

mov [y],

1

value goes into store buffer

Thread O:

mov [y],

1

execute next instruction

Thread O:

execute next instruction

mov [y], 1

Thread O:

value goes into the store buffer

Thread O:

On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Thread O:

On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Thread O:

On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Questions

e Can stores be reordered with stores?

* How do we make rules about mfence?

Global variable:

int x[1] = {0}; Another test
int Y[l] = {0}; Cant0 == t1
Thread O:

S:mov [x], 1

mfence

L:mov %$t0, [V]

S:mov [x], 1

mfence

L:mov 3t0, [V]

0?

Thread 1:

S:mov [y], 1
mfence

L:mov 3%tl, [X]

S:tmov [y], 1

mfence

L:mov 3tl, [X]

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

Global variable:

J:-nt x[1]1 = {0}; Another test
int Y[l] = {0}; Cant0 == tl1 == 07
Thread 1:
Thread O: S:mov [y], 1
mfence
S:mov [x], 1
L:mov %tl, [X]
mfence ‘
L:mov 3%t0, [y] mfence

L:mov 3tl, [X]

S:tmov [y], 1

S:mov [x], 1
' Rules:

mfence S(tores) followed by a L(oad)

| do not have to follow program order.
L:mov 3t0, [VY]

S(tores) cannot be reordered past a fence
in program order

Global variable:

int x[1] = {0}; Another test
int yv[1l] = {0}; Cant0 == tl1 == 07
Thread 1:
S: 1
Thread O: nov Lyl
. . mfence
S:mov [X], L:mov %tl, [X]
mfence ‘
L:mov 3%t0, [y] mfence

L:mov 3tl, [X]

S:tmov [y], 1

S:mov [x], 1

. Rules:
mfence S(tores) followed by a L(oad)
So we can’t | do not have to follow program order.
reorder L:mov %t0, [Y]
this instruction S(tores) cannot be reordered past a fence

atall! in program order

Rules

e Are we done?

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Global variable:

J:'nt X[l] = {O}; Another test
int y[1] = {0}; Cant0 == 0?
Thread O:

S:mov [x], 1
L:mov 3t0, [X]

S:mov [x], 1

L:mov %t0, [X] Rules:
S(tores) followed by a L(oad)

do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:mov [x], 1
L:mov 3t0, [X]

Another test

Can t0

0?

S:mov [X],

1

L:mov

(]

to0,

[X]

where to put this store?

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Global variable:

int x[1] = {0};
int y[1] = {0};
Thread O:

S:mov [X],
L:mov %tO,

1
[X]

S:mov [x], 1

where to put this store?

Another test

Can t0

0?

L:mov

(]

to0,

[X]

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

Schedule

* Parallel schedules in OpenMP

* Memory consistency models:
 Total store order
* Relaxed memory consistency
* Examples

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 0

L S

If memory access O appears before
memory access 1 in program order,
memory access 1 can it bypass program order?

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 0 Sequential Consistency
L S

If memory access O appears before
memory access 1 in program order,
memory access 1 can it bypass program order?

L NO NO

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 1

memory access 0

L S
Different

NO address

NO NO

TSO - total store order

If memory access O appears before
memory access 1 in program order,
can it bypass program order?

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 0 Weaker models?

L S

If memory access O appears before
memory access 1 in program order,
memory access 1 can it bypass program order?

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 1

L

memory access 0

S

NO

Different
address

NO

Different
address

PSO - partial store order

If memory access O appears before
memory access 1 in program order,
can it bypass program order?

Allows stores to drain from the store buffer in any order

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 1

memory access 0

L

S

YES

Different
address

Different
address

Different
address

Very relaxed model!

RMO - Relaxed Memory Order

If memory access O appears before
memory access 1 in program order,
can it bypass program order?

Other memory models?

* FENCE: can always restore order using fences. Accesses cannot be
reordered past fences!

memory access 0 Any Memory Model

L S

If memory access O appears before
L NO NO .
memory access 1 in program order, and

memory access 1 there is a FENCE between the two accesses,
can it bypass program order?

Schedule

* Parallel schedules in OpenMP

* Memory consistency models:
 Total store order
* Relaxed memory consistency
* Examples

Global variable:
int x[1] = {0};

int VAl 1] = { 0 } . First thing: change our syntax to pseudo code

Thread O: Thread 1:

L:mov 3t0, [V] L:mov 3tl, [X]
S:mov [x], 1 S:mov [y], 1

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
L:3t0 = load(y)
S:store(x,1)

First thing: change our syntax to pseudo code
You should be able to find natural mappings
to any ISA

Thread 1:

L:%tl

load (x)

S:store(y,1)

Global variable:

) Question: cant0 == t1 == 17?

int x[1] = {0};

int y[1] = {0};

Thread O: Thread 1:

L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Question: can t0

Thread O:
L:3t0 = load(y)
S:store(x,1)

Get out our lego bricks and try for sequential consistency

Thread 1:

L:3tl = load(x)
S:store(y,1)

L:3t0 = load(y)

L:3tl = load(x)

S:store(x,1)

S:store(y,1)

Global variable:

) Question: cant0 == tl1 == 1?

int x[1] = {0};

int al 1] = { 0 } : Get out our lego bricks

Thread O: Thread 1:

L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)

g \
S:store(x,1)

L:3tl = load(x)
|

S:store(y,1)

l

satisfy constraints

Not allowed under sequential consistency!

Global variable:

) Question: cant0 == tl1 == 1?

int x[1] = {0};

int al 1] = { 0 } : Get out our lego bricks

Thread O: Thread 1:

L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)

g \
S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L NO address
satisfy constraints memory access 1
S NO NO
What about TSO?

Global variable:

) Question: cant0 == tl1 == 1?

int x[1] = {0};

int al 1] = { 0 } : Get out our lego bricks

Thread O: Thread 1:

L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)

. \
S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L NO address
satisfy constraints memaory access 1
S NO NO
What about TSO? NOT ALLOWED!

Global variable:

) Question: cant0 == tl1 == 1?
int x[1] = {0};
int al 1] = { 0 } : Get out our lego bricks
Thread O: Thread 1:
L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)
pal

S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L NO address
satisfy constraints memory access 1

Different

S NO address

What about PSO?

Global variable:

) Question: cant0 == tl1 == 1?
int x[1] = {0};
int al 1] = { 0 } : Get out our lego bricks
Thread O: Thread 1:
L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)
pal

S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L NO address
satisfy constraints memory access 1

Different

S NO address

What about PSO? NO!

Global variable:

) Question: cant0 == tl1 == 1?
int x[1] = {0};
int al 1] = { 0 } : Get out our lego bricks
Thread O: Thread 1:
L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)
pal

S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L YES address
satisfy constraints memory access 1

S different Different

address address

What about RMO?

Global variable:

) Question: cant0 == tl1 == 1?
int x[1] = {0};
int al 1] = { 0 } : Get out our lego bricks
Thread O: Thread 1:
L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)
pal

S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L YES address
satisfy constraints memory access 1

S different Different

address address

What about RMO?

Global variable:

) Question: cant0 == tl1 == 1?
int x[1] = {0};
int al 1] = { 0 } : Get out our lego bricks
Thread O: Thread 1:
L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)
pal

S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L YES address
satisfy constraints memory access 1

S different Different

address address

What about RMO? YES!

Global variable:

) Question: cant0 == tl1 == 1?
int x[1] = {0};
int al 1] = { 0 } : Get out our lego bricks
Thread O: Thread 1:
L:3t0 = load(y) L:3tl = load(x)
S:store(x,1) respect program order S:store(y,1)
pal

S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L YES address
satisfy constraints memory access 1
S different Different
)) . address address
How do we disallow the behavior in RMO?

Global variable:

) Question: cant0 == t1 == 17?

int x[1] = {0};

int al 1] = {0}; Get out our lego bricks

Thread O: Thread 1:

L:3t0 = load(y) L:3tl = load(x)
fence respectprogramorder S : Store (Y, 1)
S:store(x,1) Zat ‘

S:store(x,1)

L:3tl = load(x)
|

memory access 0

L S
S:store(y,1)
l Different
L YES address
satisfy constraints memory access 1
S different Different
)) . address address
How do we disallow the behavior in RMO?

Global variable:

) Question: cant0 == t1 == 17?

int x[1] = {0};

int al 1] = {0}; Get out our lego bricks

Thread O: Thread 1:

L:3t0 = load(y) L:3tl = load(x)
fence m“mmmm“ﬂ S:store(y,1)
S:store(x,l) fence

S:store(x,1)

memory access 0

L:%3t0 = load(y) L:%tl = load(x)

| L S

S . Store (Y ’]-) Different

memory access 1

L YES address
satisfy constraints

S different Different
address address

How do we disallow the behavior in RMO?

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:

L:3t0 = load(y)
fence
S:store(x,1)

L:3t0 = load(y)

Question: can t0 == tl1 =

Get out our lego bricks

respect program order

|
fence

Thread 1:

L:3tl = load(x)

S:store(y,1)

S:store(x,1)

L:3tl = load(x)

S:store(y,1)

satisfy constraints \ J

Now we cannot break program order past the fence!

Are we done?

memory access 1

memory access 0

S

Different
address

L
L YES
different
S address

Different
address

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:

L:3t0 = load(y)
fence
S:store(x,1)

L:3t0 = load(y)

satisfy constraints \ J

Question:can t0 == tl1 == 17?

Get out our lego bricks

respect program order

|
fence

Thread 1:

L:3tl = load(x)
fence
S:store(y,1)

S:store(x,1)

L:3tl = load(x)
e

S:store(y,1)

Now we cannot break program order past the fence!

Are we done?

memory access 1

memory access 0

L S
Different
L YES address
S different Different
address address

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:

L:3t0 = load(y)
fence
S:store(x,1)

L:3t0 = load(y)

satisfy constraints \ J

Question:can t0 == tl1 == 17?

Get out our lego bricks

respect program order

|
fence

Thread 1:

L:3tl = load(x)
fence
S:store(y,1)

S:store(x,1)

L:3tl = load(x)
e

S:store(y,1)

Now we cannot break program order past the fence!
Are we done? The behavior is no longer allowed

memory access 1

memory access 0

L S
Different
L YES address
S different Different
address address

One more example

Global variable:

) Question: cant0 == 1 and tl1 == 07?

int x[1] = {0};

int y[1] = {0};

Thread O: Thread 1:
S:store(x,1) L:3t0 = load(y)
S:store(y,1) S:3%tl = load(x)

L:3t0 = load(y)

S:store(x,1)

L:3tl = load(x)

S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Question:cant0 == 1 and tl1 == 07?

start off thinking
about sequential

Thread O: consistency Thread 1:
S:store(x,1) L:3t0 = load(y)
S:store(y,1) S:3tl = load(x)

L:3t0 = load(y)

S:store(x,1)

L:3tl = load(x)

S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Question:cant0 == 1 and tl1 == 07?

start off thinking
about sequential

Thread O: consistency Thread 1:
S:store(x,1) L:3t0 = load(y)
S:store(y,1) respect program order S:%tl = load(x)

S:store(y,1)

S:store(x,1) L:%t0 = load(y)

satisfy constraints \ \

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:store(x,1)
S:store(y,1)

S:store(x,1)

What about TSO?

Question:cant0 == 1 and tl1 == 07?
Thread 1:
L:3t0 = load(y)
respect program order S o 9t 1 — load (%)
e O -
S:store(y,1)
| memory access 0
L:3t0 = load(y)] s
e — i
\IJ\.ot]. load(X) L NO 2:;235?
satisfy constraints \
memory access 1
S NO NO

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:store(x,1)
S:store(y,1)

S:store(x,1)

What about TSO? NO

Question:cant0 == 1 and tl1 == 07?
Thread 1:
L:3t0 = load(y)
respect program order S o 9t 1 — load (%)
e O -
S:store(y,1)
| memory access 0
L:3t0 = load(y)] s
e — i
\IJ\.ot]. load(X) L NO 2:;235?
satisfy constraints \
memory access 1
S NO NO

Global variable:

) Question: cant0 == 1 and tl1 == 07?

int x[1] = {0};

int y[1] = {0};

Thread O: Thread 1:
S:store(x,1) L:3t0 = load(y)
S:store(y,1) respect program order S:%tl = load(x)

S:store(y,1)

. memory access 0
S:store(x,1) L:%t0 = load(y)] .
\I.l\:%tl = load(X) L NO Zz‘;er':;t
satisfy constraints \
memory access 1
Different
S NO address

What about PSO?

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:store(x,1)
S:store(y,1)

S:store(x,1)

What about PSO?

Question:cant0 == 1 and tl1 == 07?
Thread 1:
L:3t0 = load(y)
respect program order S o %t 1 — load (%)
S:store(y,1)
| memory access 0
L:3t0 = load(y)] s
\I.l\:%tl = load(x) L NO [;i::err:;t
satisfy constraints \
memory access 1

Different
S NO address

Global variable:

) Question: cant0 == 1 and t1 == 0?
int x[1] = {0};
int y[1] = {0};
Thread O: Thread 1:
S:store(x,1) L:3t0 = load(y)
S:store(y, 1) respect program order S:%tl = load (x)
S:store(y,1)
| memory access 0
S:store(x,1) L:%t0 = load(y)] .
\I.I\:%t]. — load(X) L NO Di:;erent
satisfy constraints \ \ memory access 1
s | No |

What about PSO? YES

Global variable:

) Question: cant0 == 1 and tl1 == 0?

int x[1] = {0};

int y[1] = {0};

Thread O: Thread 1:
S:store(x,1) L:3t0 = load(y)
fence m“mmmm“ﬂ S:%tl = load(x)
S:store(y,1) fence

|
S:store(y,1)

. memory access 0
S:store(x,1) L:%t0 = load(y)] .
\I.l\:%tl = load(X) L NO Zz‘;er':;t
satisfy constraints \
memory access 1
Different
S NO address

Now it is disallowed in PSO

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:store(x,1)
fence
S:store(y,1)

S:store(x,1)

respect program order

fence
|

S:store(y,1)

Question:cant0 == 1 and tl1 == 07?

Thread 1:

L:3t0 = load(y)
S:3%tl = load(x)

satisfy constraints \

What about RMO?

memory access 0
L S
Different
L YES address
memory access 1
S Zlgf:rr:sr;t Different
address

Global variable:

) Question: cant0 == 1 and t1 == 0?

int x[1] = {0};

int y[1] = {0};

Thread O: Thread 1:
S:store(x,1) S:store(x,1) L:3t0 = load(y)
fence | S:3%tl = load(x)
S:store(y,1) fence

|
S:store(y,1)

memory access 0

L S

YES Different

address

memory access 1

S Different Different

address address

What about RMO?

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:store(x,1)
fence
S:store(y,1)

Question:cant0 == 1 and tl1 == 07?

L:3tl = load(x)

S:store(x,1)
|

fence
|

S:store(y,1)
|

Thread 1:

load(y)
load (x)

L:3t0 = load(y)

v

What about RMO? The loads can be reordered also!

memory access 1

memory access 0

L

S

YES

Different
address

Different
address

Different
address

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:store(x,1)
fence
S:store(y,1)

Question:cant0 == 1 and tl1 == 07?
Thread 1:
S:store(x,1) L:3t0 = load(y)
| fence
fence S:3%tl = load(x)
|
S:store(y,1)
| memory access 0
L:3t0 = load(y)] s
|
fence .
L YES Different

What about RMO? add a fence

memory access 1

address

Different

Different
address

address

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
S:store(x,1)
fence
S:store(y,1)

Question:cant0 == 1 and tl1 == 07?
Thread 1:
S:store(x,1) L:3t0 = load(y)
| fence
fence S:3%tl = load(x)
|
S:store(y,1)
| memory access 0
L:3t0 = load(y)] s
|
fence .
| L YES Different

L:3tl = load(x)

l

Now the relaxed behavior is disallowed

memory access 1

address

Different

Different
address

address

Memory consistency in the real world

* Historic Chips:
e X86: TSO
e Surprising robost
* mutexes and concurrent data structures generally seem to work
* watch out for store buffering
* |BM Power and ARM
e Very relaxed. Similar to RMO with even more rules

e Mutexes and data structures must be written with care
 ARM recently strengthened theirs

* Very difficult to write correct code under! PPoPP example

Memory consistency in the real world

* Historic Chips:
e X86: TSO
e Surprising robost
* mutexes and concurrent data structures generally seem to work
* watch out for store buffering
* |BM Power and ARM
e Very relaxed. Similar to RMO with even more rules

e Mutexes and data structures must be written with care
 ARM recently strengthened theirs

* Very difficult to write correct code under! PPoPP example

Companies have a history
of providing insufficient
documentation about their
rules: academics have then
gone and figured it out!

Getting better these days

Memory consistency in the real world

* Modern Chips:

e RISC-V : two specs: one similar to TSO, one similar to RMO
* Apple M1: toggles between TSO and weaker

* Vulkan does not provide any fences that provide S - L ordering

Memory consistency in the real world

* PSO and RMO were never implemented widely

* | have not met anyone who knows of any RMO taped out chip
* They are part of SPARC ISAs (i.e. RISC-V before it was cool)
* These memory models might have been part of specialized chips

* Interestingly:
e Early Nvidia GPUs appeared to informally implement RMO

* Other chips have very strange memory models:
* Alpha DEC - basically no rules

Next week

* Finish up memory models:
* Compilers

 Execution barriers

* Watch for midterm grades sometime today

