
CSE113: Parallel Programming
May 13, 2021

• Topic: Finish DOALL & Memory Consistency
• DOALL schedules in OpenMP
• Sequential Consistency
• Total Store Order
• Relaxed memory models

Announcements

• HW 3 is out:
• ask questions on Piazza!
• Thanks to those who are having good discussions!
• Due date Friday May 21

• Midterm grades are released today by midnight
• Please ask questions within two weeks

• Guest lecture in 1 week!
• Message passing concurrency and testing GPU compilers

Announcements

• Thanks for those who find typos; it helps improve the slides!

Quiz

Quiz

• Discuss Answers

Schedule

• Parallel schedules in OpenMP

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Schedule

• Parallel schedules in OpenMP

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Parallelize DOALL Loops with OpenMP

• We studied DOALL loops last week:
• What is a DOALL loop?

Parallelize DOALL Loops with OpenMP

• We studied DOALL loops last week:
• What is a DOALL loop?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

Parallelize DOALL Loops with OpenMP

• We studied DOALL loops last week:
• What is a DOALL loop?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i+1];

}

Parallelize DOALL Loops with OpenMP

• We studied DOALL loops last week:
• What is a DOALL loop?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i+1];

}

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + a[i+1];

}

Parallelize DOALL Loops with OpenMP

• We studied DOALL loops last week:
• What is a DOALL loop?

• We talked about very complicated ways to implement parallelism
over these loops

• But what if I was to tell you that there was an easier way?

• Built on top of C++ and Fortran

• First released in 1997 (way before C++11 threads!)
• Still used widely today, esp. in HPC and ML

• consists of:
• pragma based compiler directives
• runtime

• Many features
• atomic RMWs
• thread spawn and join
• shared memory

• Perhaps best known for supporting parallel DOALL loops

Why is it so popular?

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

parallelize a loop with one line!

code works with or without compiler
support!

Have to also add compile line: -fopenmp

Lets try it out

Customization in OpenMP pragmas

#pragma omp parallel for num_threads(N)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Number of threads is great for running scaling experiments or reducing the load on the machine

By default OpenMP will try to saturate your machine

Customization in OpenMP pragmas

#pragma omp parallel for schedule(S,C)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Specify the parallel schedule. There are several options:

static - evenly chunks iterations across cores
dynamic - workstealing
others - we won’t get into them in the class

Can specify the chunk size with C

By default OpenMP will select a good chunk size based on your architecture!

+ + + + + + + +

= = = = = = = =

array a

array b

array c

#pragma omp parallel for num_threads(N) schedule(S,C)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

#pragma omp parallel for num_threads(4) schedule(S,C)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

#pragma omp parallel for num_threads(4) schedule(static,1)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

#pragma omp parallel for num_threads(4) schedule(static,2)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

#pragma omp parallel for num_threads(4) schedule(static,2)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

What about workstealing?

#pragma omp parallel for num_threads(4) schedule(dynamic)
for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

what happens when we run this?

What about workstealing?

What about a loop that has load imbalance? Recall this loop from the previous lecture

#pragma omp parallel for num_threads(2) schedule(dynamic)
for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Inner loop does a variable amount of work depending on the outer loop iteration

OpenMP takeaways

• Great for DOALL loops!
• Rapid experimentation for different schedules and parameters

• Dynamic schedules are expensive: use with caution

• Specification includes:
• RMWs
• Mutexes

• Widely used in HPC community

Schedule

• Parallel schedules in OpenMP

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Memory Consistency

Memory Consistency

• We have been very strict about using atomic types in this class
• and the methods (.load and .store)
• why?

• Architectures do very strange things with memory loads and stores
• Compilers do too (but we won’t talk too much about them today)

• C++ gives us sequential consistency if we use atomic types and operations
• What do we remember sequential consistency from?

Sequential consistency for atomic memory

• Let’s play our favorite game:

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Is it possible for
t0 == 0 and t1 ==1

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1); int t0 = y.load();

y.store(1); int t1 = x.load();

Is it possible for
t0 == 0 and t1 ==1

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1);

int t0 = y.load();

y.store(1);

int t1 = x.load();

Is it possible for
t0 == 0 and t1 ==1

yes!

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1); int t0 = y.load();

y.store(1); int t1 = x.load();

Is it possible for
t0 == 1 and t1 == 0

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1); int t0 = y.load();

y.store(1);

int t1 = x.load();

respect program order

satisfy constraints

Is it possible for
t0 == 1 and t1 == 0

Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

x.store(1);

int t0 = y.load(); int t1 = x.load();

y.store(1);

Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

x.store(1);

int t0 = y.load();

int t1 = x.load();
y.store(1);

respect program order

satisfy constraints

C++

• Plain atomic accesses are documented to be sequentially consistent (SC)

• Why wasn’t SC very good for concurrent data structures?
• Compossibility: two objects that are SC might not be SC when used together

• Programs contain only 1 shared memory though; no reason to compose different
main memories.

Schedule

• Parallel schedules in OpenMP

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

What about ISAs?

• Remember, it is important for us to understand how our code executes on
the architecture to write high performing programs

• Lets think about x86
• Instructions:
• MOV %t0 [x] - loads the value at x to register t0
• MOV [y] 1 - stores the value 1 to memory location y

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

This is great for C++!
What about this test in x86?

mov [x], 1

mov %t0, [y]

mov %t1, [x]
mov [y], 1

respect program order

satisfy constraints

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

This is great for C++!
What about this test in x86?

mov [x], 1

mov %t0, [y]

mov %t1, [x]
mov [y], 1

respect program order

satisfy constraints

shouldn’t be allowed
under sequential
consistency!

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

This is great for C++!
What about this test in x86?

mov [x], 1

mov %t0, [y]

mov %t1, [x]
mov [y], 1

respect program order

satisfy constraints

shouldn’t be allowed
under sequential
consistency!

But if we run this program on hardware:

We would see the condition satisfied!

What is going on?!

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y]
mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

mov [x], 1 mov [y], 1

execute first instruction
what happens to the stores?

x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

eventually they flush to main memory

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:1

eventually they flush to main memory

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

rewind

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

execute first instruction

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

values get stored in SB

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Execute next instruction

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Values get loaded from memory

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

we see t0 == t1 == 0!

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Store buffers are drained eventually

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:1
y:1

Store buffers are drained eventually
but we’ve already done our loads

Our first relaxed memory execution!

• also known as weak memory behaviors

• An execution that is NOT allowed by sequential consistency

• A memory model that allows relaxed memory executions is known as
a relaxed memory model
• X86 has a relaxed memory model due to store buffering
• If you restrict yourself to use only default atomic operations, C++ has does

NOT have a weak memory model

Litmus tests

• Small concurrent programs that check for relaxed memory behaviors

• Vendors have a long history of under documented memory
consistency models

• Academics have empirically explored the memory models
• Many vendors have unofficially endorsed academic models
• X86 behaviors were documented by researchers before Intel!

Litmus tests

Thread 0:
mov [x], 1
mov %t0, [y]

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

This test is called “store buffering”

Restoring sequential consistency

• It is typical that relaxed memory models provide special instructions
which can be used to disallow weak behaviors.

• These instructions are called Fences

• The X86 fence is called mfence. It flushes the store buffer.

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

mfence mfence

Store Buffer Store Buffer

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Main Memory
x:0
y:0

mfence mfence
Execute first instruction

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfenceValues go into the store buffer

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfence

Execute next instruction

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

store buffers are flushed

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

store buffers are flushed

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

execute next instruction

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

values are loaded from memory

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

We don’t get the problematic behavior: t0 != 0 and t1 != 0

Next example

Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

single thread
same address

possible outcomes:
t0 = 1
t0 = 0

Which one do you expect?

Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

How does this execute?

Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

execute first instruction

mov [x], 1

Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Store the value in the store buffer

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Next instruction

mov %t0, [x]

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Store buffer?
Main memory?

mov %t0, [x]

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Threads check store buffer before going to main memory

It is close and cheap to check.

mov %t0, [x]

Memory Consistency

• How to specify a relaxed memory model?

• Good time for a 5 minute break!

Memory Consistency

• How to specify a relaxed memory model?

• We can do it operationally
• by constructing a high-level machine and reasoning about operations through

the machine.

• or we can talk about instructions that are allowed to ”break” program order.

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

We will annotate instructions with S for store, and L for loads

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

We will annotate instructions with S for store, and L for loads

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1 Now we can satisfy the condition!

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Lets peak under the hood here

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads

we can ignore this condition!!

put y in SB

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1 store buffer gets flushed

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads

we can ignore this condition!!

put y in SB

Questions

• Can stores be reordered with stores?

Thread 0:

mov [x], 1

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer

Thread 0:

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer

execute the first instruction

mov [x], 1

Thread 0:

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

value goes into store buffer

Thread 0:

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

execute next instruction

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

execute next instruction

mov [y], 1

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1
y:1

value goes into the store buffer

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1
y:1

On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Thread 0:

Core 0

Main Memory
x:1
y:0

Store Buffer
y:1

On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Thread 0:

Core 0

Main Memory
x:1
y:1

Store Buffer
On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Questions

• Can stores be reordered with stores?

• How do we make rules about mfence?

Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

mfence

mfence

Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

mfence

mfence

Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

mfence

mfence
So we can’t
reorder
this instruction
at all!

Rules

• Are we done?

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x] Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1 L:mov %t0, [x]

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

where to put this store?

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1 L:mov %t0, [x]

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

where to put this store?

TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

Schedule

• Parallel schedules in OpenMP

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Other memory models?

• We can specify them in terms of what reorderings are allowed

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Sequential Consistency

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different
address

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

TSO - total store order

Other memory models?

• We can specify them in terms of what reorderings are allowed

? ?

? ?

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Weaker models?

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different
address

NO Different
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

PSO - partial store order

Allows stores to drain from the store buffer in any order

Other memory models?

• We can specify them in terms of what reorderings are allowed

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

RMO - Relaxed Memory Order

Very relaxed model!

Other memory models?

• FENCE: can always restore order using fences. Accesses cannot be
reordered past fences!

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order, and
there is a FENCE between the two accesses,
can it bypass program order?

L S

L

S

Any Memory Model

Schedule

• Parallel schedules in OpenMP

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Thread 0:
L:mov %t0, [y]
S:mov [x], 1

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:mov %t1, [x]
S:mov [y], 1

First thing: change our syntax to pseudo code

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

First thing: change our syntax to pseudo code
You should be able to find natural mappings
to any ISA

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Question: can t0 == t1 == 1?

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for sequential consistency

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Not allowed under sequential consistency!

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about TSO?

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about TSO? NOT ALLOWED!

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about PSO? NO!

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about RMO? YES!

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

How do we disallow the behavior in RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

How do we disallow the behavior in RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

How do we disallow the behavior in RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Now we cannot break program order past the fence!
Are we done?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Now we cannot break program order past the fence!
Are we done?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Now we cannot break program order past the fence!
Are we done? The behavior is no longer allowed

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

One more example

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency

respect program order

satisfy constraints

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about TSO?

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about TSO? NO

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO? YES

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

Now it is disallowed in PSO

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about RMO?

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO?

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO? The loads can be reordered also!

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x) L:%t0 = load(y)

What about RMO? add a fence

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

Now the relaxed behavior is disallowed

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

fence

Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs

• Very difficult to write correct code under! PPoPP example

Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs

• Very difficult to write correct code under! PPoPP example

Companies have a history
of providing insufficient
documentation about their
rules: academics have then
gone and figured it out!

Getting better these days

Memory consistency in the real world

• Modern Chips:
• RISC-V : two specs: one similar to TSO, one similar to RMO
• Apple M1: toggles between TSO and weaker

• Vulkan does not provide any fences that provide S - L ordering

Memory consistency in the real world

• PSO and RMO were never implemented widely
• I have not met anyone who knows of any RMO taped out chip
• They are part of SPARC ISAs (i.e. RISC-V before it was cool)
• These memory models might have been part of specialized chips

• Interestingly:
• Early Nvidia GPUs appeared to informally implement RMO

• Other chips have very strange memory models:
• Alpha DEC - basically no rules

Next week

• Finish up memory models:
• Compilers

• Execution barriers

• Watch for midterm grades sometime today

