
CSE113: Parallel Programming
May 11, 2021

• Topic: DOALL Loops and Workstealing
• DOALL loops
• Parallel Schedules:

• Static
• global worklist
• local worklist

0 1 3 4

thread 1thread 0

Queue 0 Queue 1

Announcements

• HW2 and midterm deadlines are over!
• Aiming to have midterm grades by Thursday
• Aiming to have HW2 grades next Thursday

• HW3 is out:
• A day off schedule. Due on Friday the 21
• Material will be be last weeks slides and this weeks slides

Announcements

• Last day of Module 3
• Next week we move on to reasoning about parallel computations
• Relaxed Memory models
• Barriers
• Forward Progress

• May 20: guest lecture
• Message passing concurrency: Hugues Evrard
• Testing GPU compilers: Alastair Donaldson

Announcements

• Office hours:
• Mine will be canceled this week: sorry!
• I will spend extra time on Piazza and mailing list

• HW 1:
• Any questions about grades need to be asked by May 20
• Any public git repos that you used to develop should be made private please!

Quiz

Quiz

• Go over answers

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = SIZE-1; i <= 0; i--) {
a[i] = b[i] + c[i];

}

for (int i = SIZE-1; i <= 0; i--) {
a[i] += a[i+1]

}

are they the same if you traverse them backwards?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (int i = SIZE-1; i <= 0; i--) {
a[i] = b[i] + c[i];

}

for (int i = SIZE-1; i <= 0; i--) {
a[i] += a[i+1]

}

are they the same if you traverse them backwards?

No!

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (pick i randomly) {
a[i] = b[i] + c[i];

}

for (pick i randomly) {
a[i] += a[i+1]

}

what about a random order?

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

for (int i = 0; i < SIZE; i++) {
a[i] += a[i+1]

}

adds two arrays

adds elements with neighbors

for (pick i randomly) {
a[i] = b[i] + c[i];

}

for (pick i randomly) {
a[i] += a[i+1]

}

what about a random order?

No!

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results

for (int i = 0; i < SIZE; i++) {
a[i] = b[i] + c[i];

}

These are DOALL loops:
• Loop iterations are independent
• You can do them in ANY order and get the same results

• Most importantly: you can do the iterations in parallel!
• Assign each thread a set of indices to compute

DOALL Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

DOALL Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 0; i < dim1; i++) {
for (int j = 0; j < dim3; j++) {
for (int k = 0; k < dim2; k++) {
a[i][j] += b[i][k] * c[k][j];

}
}

}

matrix multiplication
example

DOALL Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}

DOALL Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}

substitute:
i = 3*j + 2

DOALL Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int j = 0; j < 33; j++) {
a[3*j + 2] = c[3*j + 2 + 128];

}

substitute:
i = 3*j + 2

DOALL Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1

for (int j = 0; j < 33; j+=1) {
a[3*j + 2] = c[(3*j + 2) + 128];

}

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}

DOALL Loops

• Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

Safety Criteria

• How do we check this?
• If the property doesn’t hold then there exists 2 iterations, such that if they are

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

index calculation based on the loop variable
Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
index(ix) != index(iy)

Why?
Because if
index(ix) == index(iy)
then:
a[index(ix)] will equal
either loop(ix) or loop(iy)
depending on the order

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Why?

if ix iteration happens first, then
iteration iy reads an updated value.

if iy happens first, then it reads the
original value

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop?

Parallel Schedules

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute

for (int i = 0; i < SIZE; i++) {
c[i] = a[i] + b[i];

}

Is this a DOALL loop? How should we parallelize it?

Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Parallel Schedules

• Which one is more efficient?

Parallel Schedules

• Which one is more efficient?

• These are called Parallel Schedules for DOALL Loops
• We will discuss several of them today.

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4

Thread 0 Thread 1 Thread N

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

void parallel_loop(..., int tid, int num_threads)
{

for (int x = 0; x < SIZE; x++) {
// work based on x

}
}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

determine chunk size in new function

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
for (int x = 0; x < SIZE; x++) {
// work based on x

}
}

Static schedule

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• Works well when loop iterations take similar amounts of time

Set new loop bounds

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

void foo() {
...
for (int t = 0; t < NUM_THREADS; t++) {
spawn(parallel_loop(..., t, NUM_THREADS))

}
join();

...
}

• Works well when loop iterations take similar amounts of time

Spawn threads

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

You will need to adapt the thread spawn, join
to C++

Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

End example

Static schedule

• Example, 2 threads/cores, array of size 9

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = ?

0: start = ?

0: end = ?

1: start = ?

1: end = ?

8

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

last thread gets more work

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == num_threads - 1) {
end = SIZE;

}
for (int x = start; x < end; x++) {
// work based on x

}
}

last thread gets more work

What is the worst case?

End example

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8

• Example, 2 threads/cores, array of size 9 ceiling division, this will distribute
uneven work in the last thread to all
other threads

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

8

• Example, 2 threads/cores, array of size 9

9

out of bounds

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

8

• Example, 2 threads/cores, array of size 9

9

out of bounds

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)

for (int x = start; x < end; x++) {
// work based on x

}
}

Static schedule

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 9

8

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid, int num_threads)
{
int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)

for (int x = start; x < end; x++) {
// work based on x

}
}

most threads do equal amounts
of work, last thread may do less.

Which one is better/worse?
Max slowdown for last thread does all
the extra work?

Max slowdown for ceiling?

End example

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

5 minute break here

Irregular parallelism in loops

• Tasks are not balanced

• Appears in lots of emerging workloads

Irregular parallelism in loops

• Tasks are not balanced

• Appears in lots of emerging workloads

social network analytics where threads are parallel across users

Irregular parallelism in loops

• Tasks are not balanced

• Appears in lots of emerging workloads

sparse DNNs where a large percentage of weights are dropped

From: https://arxiv.org/pdf/1911.02497.pdf

Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute.

• Threads with shorter tasks are under utilized.

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

irregular (or unbalanced) parallelism:
each x iteration performs different
amount of work.

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = x; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by second thread:

t2_work = total_work − t1_work

Irregular parallelism in loops

Example: SIZE = 64

total_work = 2016
t2_work = 496
t1_work = 1520

t1 does ~3x more work than t2

Only provides ~1.3x speedup

Potential solution:
Have T1 do only ¼ of the iterations
Gives a better speedup of 1.77x

Not a feasible solution because often times load
imbalance is not given by a static equation on loop
bounds!

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by second thread:

t2_work = total_work − t1_work

Work stealing

• Tasks are dynamically assigned to threads.

Work stealing - global implicit worklist

• Pros
• Simple to implement

• Cons:
• High contention on global counter
• Potentially bad memory locality.

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

cannot color initially!

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1

2 3 4 5 6 7 SIZE -1

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

Dynamically take the next iteration

thread 1thread 0 1 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 2

3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 3

4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

34

5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks

End example

Work stealing - global implicit worklist

• How to implement

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Work stealing - global implicit worklist

• How to implement

void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Replicate code in a new function. Pass all needed variables as arguments.

Work stealing - global implicit worklist

• How to implement

move loop variable to be a global atomic variable

atomic_int x(0);
void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Work stealing - global implicit worklist

• How to implement

change loop bounds in new function to use a local variable using global variable.

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = ??
local_x < SIZE;
local_x = ??) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Work stealing - global implicit worklist

• How to implement

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

These must be
atomic updates!

change loop bounds in new function to use a local variable using global variable.

Work stealing - global implicit worklist

• How to implement

Spawn threads in original function and join them afterwards

void foo() {
...
for (t = 0; x < THREADS; t++) {
spawn(parallel_loop);

}
join();
...

}

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

You will have to change to C++ syntax for the homework!

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

x: 0
0 - local_x - UNDEF
1 - local_x - UNDEF

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 1

2 3 4 5 6 7 SIZE -1

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 2

3 4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0

3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 4
0 - local_x - 0
1 - local_x - 3

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

0 3

4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 4
0 - local_x - 0
1 - local_x - 3

thread 1thread 0

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

thread 1thread 0

x: 4
0 - local_x - 0
1 - local_x - 3

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

3

4 5 6 7 SIZE -1

atomic_int(x);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

thread 1thread 0

x: 5
0 - local_x - 4
1 - local_x - 3

Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically

34

5 6 7 SIZE -1

atomic_int x(0);
void parallel_loop(...) {

for (int local_x = atomic_fetch_add(&x,1);
local_x < SIZE;
local_x = atomic_fetch_add(&x,1)) {

// dynamic work based on x
}

}

x: 5
0 - local_x - 4
1 - local_x - 3

thread 1thread 0

Schedule

• DOALL Loops

• Parallel Schedules:
• Static
• Global Worklists
• Local Worklists

Work stealing - local worklists

• More difficult to implement: typically requires concurrent data-
structures

• low contention on local data-structures

• potentially better cache locality

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

• local worklists: divide tasks into different worklists for each thread

0 1 3 4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

3

4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1 4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1 4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

4

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0

1

thread 1thread 0

steal!

Work stealing - local worklists

Queue 0 Queue 1

• local worklists: divide tasks into different worklists for each thread

0 1

thread 1thread 0

Work stealing - local worklists

Queue 0 Queue 1

• How to implement:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

• How to implement:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a new function, taking any variables used in loop body as args. Additionally take in a thread id

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

What type of queues?

• How to implement:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

What type of queues?
We’re going to use InputOutput Queues!

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

Input/output Queues

indexes

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

input phase

Input/output Queues

indexes

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

0 1 2 3

input phase

Input/output Queues

indexes

• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists

0 1 2 3

input phase

output phase

Input/output Queues

indexes

• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...

...
}

First we need to initialize the queues

• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// Spawn threads to initialize
// join initializing threads

...
}

void parallel_enq(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing

• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// Spawn threads to initialize
// join initializing threads

...
}

void parallel_enq(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing

Make sure to account for boundary conditions!

• How to implement in a compiler:

Work stealing - local worklists

void parallel_enq(..., int tid, int num_threads)
{

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (int x = start; x < end; x++) {
cq[tid].enq(x);

}
}

Just like the static schedule, except we are
enqueuing

Make sure to account for boundary conditions!

0 1 2 3x

0 0 1 1tid

NUM_THREADS = 2;
SIZE = 4;
CHUNK = 2;

• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

void parallel_loop(..., int tid, int num_threads) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

How do we modify the parallel loop?

• How to implement in a compiler:

Work stealing - local worklists

void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

loop until the queue is empty

• How to implement in a compiler:

Work stealing - local worklists

void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

loop until the queue is empty
Are we finished?

• How to implement in a compiler:

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);

}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

Track how many threads are finished

• How to implement in a compiler:

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

While there are threads that are still working

• How to implement in a compiler:

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
...

}

pick a random target and steal a task

• How to implement in a compiler:

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
// join loop threads
...

}

join the threads

• How to implement in a compiler:

Work stealing - local worklists

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

concurrent_queues cq[NUM_THREADS];
void foo() {
...
// initialize queues
// join threads

// launch loop function
// join loop threads
...

}

join the threads

thread 1thread 0

Work stealing - local worklists

0 1 3 4

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

thread 1thread 0

Work stealing - local worklists

0 1 3 4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

thread 1thread 0

Work stealing - local worklists

0

1

3

4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

thread 1thread 0

Work stealing - local worklists

0

1 4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

thread 1thread 0

Work stealing - local worklists

0

1

4

atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

IOQueue 0 IOQueue 1

Work stealing - local worklists

0

1

thread 1thread 0

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

0 1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

1

thread 1thread 0

finished_threads: 1

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

1

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

1

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

finished!

Work stealing - local worklists

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Work stealing - local worklists

thread 1thread 0

finished_threads: 2

IOQueue 0 IOQueue 1
atomic_int finished_threads(0);
void parallel_loop(..., int tid, int num_threads) {

int task = 0;
for (x = cq[tid].deq(); x != -1; x = cq[tid].deq())
{
// dynamic work based on task

}
atomic_fetch_add(&finished_threads,1);
while (finished_threads.load() != num_threads) {
int target = // pick a thread to steal from
int task = cq[target].deq();
if (task != -1) {

// perform task
}

}
}

Next week

• Further Reading:
• Chapter 16 in the book discusses different types of workstealing

• We’ll see some of this implemented in OpenMP!

• Memory consistency models!

