
CSE113: Parallel Programming
June 1, 2021

• Topic: GPUs 2
• Review last week optimizations
• Continue optimizing and have the final round of CPU

vs. GPU!
• Overview of advanced GPU topics

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

Announcements

• HW2 grades posted
• Talk to us in 1 week if you have questions/issues

• We plan to have HW3 done in ~1 week.

• HW4 is out
• Please try not to be late on this one!
• Due on Monday, June 7
• There is no guarantee that we will check Piazza on the weekend
• Joint office hours on Wednesday

Few hints on HW4

• If you are having trouble observing relaxed behaviors:
• Try closing ALL applications
• Try running natively (e.g. not in Docker)
• Try running on the unix timeshare

• Compilation on the time share works
• I (and other students) have been able to get relaxed behaviors observations
• run “top” and “who” to make sure the machine is not being heavily used

Announcements

• SETs are out
• Please do them!

• Final:
• Wendesday June 9.
• You have 1 day (Released midnight June 8, due midnight June 9)
• If you want to budget time: 4pm - 7pm is our allotted time
• Plan on duration similar to midterm
• We will be monitoring private piazza posts and emails for clarification

questions
• Late finals will not be accepted!

Announcements

• The rest of the quarter:
• 1 lectures about GPUs
• 1 lecture about distributed computing

• If you are interested in GPU programming:
• CUDA by example is a great book!
• Linked to in the course material
• IF you are interested and IF you do not have an Nvidia GPU, message the

teach mailing list and we can try to find (limited) resources on campus

Quiz

Quiz

• Go over answers

Schedule

• Review previous optimizations

• New optimizations

• Advanced GPU topics

Schedule

• Review previous optimizations

• New optimizations

• Advanced GPU topics

Round 2

Nvidia 940m
1.8 Billion transistors
33 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Round 2

Nvidia 940m
1.8 Billion transistors
33 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Where were we?

Programming a GPU

• The problem: Vector addition

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Programming a GPU

• The problem: Vector addition

• Who can do it faster?

Lets set up the CPU

• CPU code

• Why do we access memory like this?

GPU code

• Review:

GPU set up
• Our heterogeneous, parallel, programming model

CPU GPU

System Memory Graphics Memory

PCIE

host device

The GPU Program

• Write a special function in your C++ code.
• Called a Kernel
• Use the new keyword __global__
• Keywords in

• OpenCL __kernel
• Metal kernel

• Write it how you’d write any other function

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

The GPU hardware

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads
thread id

GPU Memory

CPU GPU

System Memory Graphics Memory

CPU Memory:
Fast: Low Latency
Easily saturated: Low Bandwidth
Scales well: up to 1 TB
DDR

GPU Memory:
slow: High Latency
hard to saturate: High Bandwidth
doesn’t scale: 32 GB
GDDR, HBM

Different technologies2-lane straight highway
driven on by sports cars

16-lane highway on a windy
road driven by semi trucks

GPU Memory

CPU GPU

System Memory Graphics Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

memory access
600 cycles

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 0
and put warp 1 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 1
and put warp 2 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 2
and put warp 0 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2

We can hide latency through
preemption and concurrency!

Hey, my memory has arrived!

preempt warp 2
and put warp 0 on

Preemption and concurrency?
But wait, I thought preemption was expensive?

Registers all stay on chip

Preemption and concurrency?
But wait, I thought preemption was expensive?

dedicated scheduler logic

Preemption and concurrency?
But wait, I thought preemption was expensive?

bound on number of warps: 32

Go back to our program

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Go back to our program

• What performance were we at?

Schedule

• Review previous optimizations

• New optimizations

• Advanced GPU topics

Schedule

• Review previous optimizations

• New optimizations

• Advanced GPU topics

Optimizing memory accesses

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

This is the instruction cache... Why doesn’t every core have a instruction
buffer to keep track of its program?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

instruction is fetched from the buffer
and distributed to all the cores.

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Cores can a large register file
they share expensive HW units (load/store and special functions)

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

All cores need to wait until all cores finish the first instruction

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?
More cores (share program counters)
Can be efficient to share other hardware resources

Warp execution

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Lets look closer at memory

4 cores are accessing memory. what happens if
they access the same value?

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value

a[0] a[0] a[0] a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

a[0] a[1] a[2] a[3]

a[0-4]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

a[0] a[1] a[2] a[3]

a[0-4]

stream

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[x-(x+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[y-(y+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[z-(z+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[w-(w+4)]

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

How can we fix this

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[0] a[chunk*1] a[chunk*2] a[chunk*3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[0-4]

a[0] a[chunk*1] a[chunk*2] a[chunk*3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[chunk - (chunk+4)]

a[0] a[chunk*1] a[chunk*2] a[chunk*3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[0] a[chunk*1] a[chunk*2] a[chunk*3]

a[2*chunk - (2*chunk+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[3*chunk - (3*chunk+4)]

a[0] a[chunk*1] a[chunk*2] a[chunk*3]

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

How can we fix this

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

What sort of pattern is this?

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets change this to a stride pattern

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

What sort of pattern is this?

Coalesced memory accesses

Lets try it! What do we think?

Coalesced memory accesses

Lets try it! What do we think?

😀

What else can we do?

Good time for a break

• 5 minute break

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. My little GPU has 4

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. My little GPU has 4

Multiple streaming multiprocessors
CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
practically no limit on blocks: launch as many as you need to map 1 thread to 1 data element

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

id within the block

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

id within the block threads per block

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Launch with many thread blocks

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
d_a[i] = d_b[i] + d_c[i];

}

calling the function

vector_add<<<1024,1024>>>(d_a, d_b, d_c, size);

Need to recalculate some thread ids.

#define SIZE (1024*1024)

Launch with many thread blocks

Now we have 1 thread for each element

thread ids
threadIdx.x is thread id within a block

example threadIdx.x == 9

blockIdx.x == 0 blockIdx.x == 1 blockIdx.x == 2 blockIdx.x == 4

thread ids
threadIdx.x is thread id within a block

example threadIdx.x == 9

blockIdx.x == 0 blockIdx.x == 1 blockIdx.x == 2 blockIdx.x == 4

How to get a unique id per thread?

int i = blockIdx.x * blockDim.x + threadIdx.x;

Final Round

Nvidia 940m
1.8 Billion transistors
75 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Final Round

Nvidia 940m
1.8 Billion transistors
75 TDP
Est. $130

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The GPU in
my PhD laptop

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Nearly 4x faster!!

Schedule

• Review previous optimizations

• New optimizations

• Advanced GPU topics

Schedule

• Review previous optimizations

• New optimizations

• Advanced GPU topics

Instruction Cache

L1 cache

Shared Memory

Instruction Cache

L1 cache

Shared Memory

Threads 0-16

Threads 16-32 CANNOT execute them
in parallel!

Instruction Cache

L1 cache

Shared Memory

Threads 0-16

No-ops

Instruction Cache

L1 cache

Shared Memory

No-ops

Threads 16-32

Instruction Cache

L1 cache

Shared Memory

Warp scheduler keeps a bitmask for each warp
Example:
[0 1 1 0 …] -> execute thread 1 and 2, no-op the rest

How is the bit vector initialized?

Do “only” need a bit vector?

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Bit vector stack for warp 0

Pretend we have a warp size of 16

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Bit vector stack for warp 0

Pretend we have a warp size of 16

[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0]

Push on the stack for if

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Bit vector stack for warp 0

Pretend we have a warp size of 16

[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Bit vector stack for warp 0

Pretend we have a warp size of 16

[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0]

Pop the stack

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Bit vector stack for warp 0

Pretend we have a warp size of 16

[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

Complement the top item on the stack for else

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Bit vector stack for warp 0

Pretend we have a warp size of 16

Pop

What about this?

Synchronization and
Shared Memory

Synchronization and
Shared Memory

Instruction Cache

L1 cache

Shared Memory

• Last part of SM architecture to talk about!

• What if program requires thread
communication?

• Threads in same warp execute “lock-step”

• BUT threads in different warps can de-sync
(execute different instructions)

Case study: Reduction

• Vector reduction: Sum up elements in array

• Parallel algorithm? Consider 4 threads

1 2 3 4 5 6 7 8 = 36

Case study: Reduction

1 2 3 4 5 6 7 8

Reduce to 4 elements by striding

6 8 10 12 5 6 7 8

t0 t1 t2 t3

Case study: Reduction

1 2 3 4 5 6 7 8

Reduce to 4 elements by striding

Use half as many threads to compute
the next round

6 8 10 12 5 6 7 8

t0 t1 t2 t3

16 20 10 12 5 6 7 8

t0 t1

Case study: Reduction

1 2 3 4 5 6 7 8

Reduce to 4 elements by striding

6 8 10 12 5 6 7 8

t0 t1 t2 t3

16 20 10 12 5 6 7 8

Use half as many threads to compute
the next roundt0 t1

36 20 10 12 5 6 7 8

t0 half as many again, until single result
is reached

Requires synchronization between
levels!

Demo

• Barrier

Shared memory (if time)
Instruction Cache

L1 cache

Shared Memory

• Software managed cache

• Can be used to share memory between
threads in the same block efficiently

Performance Portability

What about different vendors?

• AMD – warp size of 64

• Intel – warp size of 8 OR 16 depending on resource usage

• ARM – old chips do not have warps, new chips have warp size of 8

• All vendors except Nvidia have max block size of 256. ARM supports
only 128 in some cases.

• Different memory technologies (DDR, GDDR, HBM)

Performance
portability is very
difficult…

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and McIntosh-Smith

Performance
portability is very
difficult…

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and McIntosh-Smith

nvidia chips tuned for Nvidia gpus

Performance
portability is very
difficult…

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and McIntosh-Smith

AMD chips tuned for AMD chips

Performance
portability is very
difficult…

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and McIntosh-Smith

CPU chips tuned for CPUs

Performance
portability is very
difficult…

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and McIntosh-Smith

AMD chips tuned for CPUs
and Nvidia GPUS

Performance
portability is very
difficult…

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and McIntosh-Smith

CPU chips tuned for Nvidia and AMD
GPUs

Putting it all together:

- GPUs are programmed as external
accelerators: Host must manage memory!

- threads execute in groups of 32 (or
1,8,16,64) called a warp.

- Parallelism across warps hides latency

- Access memory in strided patterns

- Use many blocks!

- Synchronization available across threads in
the same block

Further readings

On Thursday

• Reese will talk about distributed computing!

• Office hours on Wednesday will be joint (go over homework
questions)

