CSE113: Parallel Programming

June 1, 2021 —

Warp Scheduler

Dispatch Unit Dispatech Unit
A L

Register File (16,384 x 32-bit)

* Topic: GPUs 2 1T 1T e

* Review last week optimizations Core [Core | [Core | Lot
e Continue optimizing and have the final round of CPU Core | Core | Core LDST
VS. GPU! Core Core Core LDVST

* Overview of advanced GPU topics Core |Cora |Core Lot

Core Core Core LDJST
Core Core Core LDVST

Core Core Core LDV/ST

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

Announcements

* HW?2 grades posted

* Talk to us in 1 week if you have questions/issues

* We plan to have HW3 done in ~1 week.

 HW4 is out

* Please try not to be late on this one!

* Due on Monday, June 7

* There is no guarantee that we will check Piazza on the weekend
* Joint office hours on Wednesday

Few hints on HWA4

* If you are having trouble observing relaxed behaviors:
e Try closing ALL applications
* Try running natively (e.g. not in Docker)

* Try running on the unix timeshare
* Compilation on the time share works
* | (and other students) have been able to get relaxed behaviors observations
* run “top” and “who” to make sure the machine is not being heavily used

Announcements

* SETs are out
 Please do them!

* Final:
 Wendesday June 9.
You have 1 day (Released midnight June 8, due midnight June 9)
If you want to budget time: 4pm - 7pm is our allotted time
Plan on duration similar to midterm

We will be monitoring private piazza posts and emails for clarification
guestions

Late finals will not be accepted!

Announcements

* The rest of the quarter:
* 1 lectures about GPUs
* 1 |lecture about distributed computing

* If you are interested in GPU programming:
 CUDA by example is a great book!
* Linked to in the course material

* |F you are interested and IF you do not have an Nvidia GPU, message the
teach mailing list and we can try to find (limited) resources on campus

Quiz

e GO over answers

Schedule

* Review previous optimizations
* New optimizations

* Advanced GPU topics

Schedule

* Review previous optimizations
* New optimizations

* Advanced GPU topics

Round 2

The CPU in
my professor
workstation

The GPU in
my PhD laptop

LB B R B B B B O
INTEL(R) CORE™ i7
i7-9700K

<

NVIDIA. SRS63 3.60GHZ

X930F139

GeFonrce
40m

Nvidia 940m :
1.8 Billion t - Intel i7-9700K
. Hion transistors - .
33 TDP 2.16 Billion transistors
95 TDP
ESt. $13O https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html ESt $3 16

https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Where were we?

Round 2

The CPU in
my professor
workstation

The GPU in
my PhD laptop

LB B R B B B B O
INTEL(R) CORE™ i7
i7-9700K

<

NVIDIA. SRS63 3.60GHZ

X930F139

GeFonrce
40m

Nvidia 940m :
1.8 Billion t - Intel i7-9700K
. Hion transistors - .
33 TDP 2.16 Billion transistors
95 TDP
ESt. $13O https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html ESt $3 16

https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Programming a GPU

* The problem: Vector addition

Embarrassingly parallel

array a
Computation
can easily be + +
divided into
threads array b

Thread O - Blue

Thread 1 -
Thread 2 - - -

Thread 3 -

array c

Programming a GPU

* The problem: Vector addition

e Who can do it faster?

Lets set up the CPU

e CPU code

* Why do we access memory like this?

GPU code

e Review:

GPU set up

* Our heterogeneous, parallel, programming model

host

CPU

System Memory

device

GPU

Graphics Memory

PCIE

The GPU Program

e Write a special function in your C++ code.
* Called a Kernel
* Use the new keyword global

e Keywords in
* OpenCL kernel
* Metal kernel

* Write it how you’d write any other function

The GPU Program

__global___ void vector add(int * a, int * b, int * c, int size) {
for (int 1 = 0; 1 < size; i++) {
afi] = b[1] + c[1];

calling the function

vector add<<<l1l,1>>>(d a, d b, d c, size);

The GPU hardware

Instruction Buffer
Warp Scheduler

Dispatch Unit
4

Dispatch Unit
4

Register File (16,384 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

LOVST

First parallelization attempt

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function

_ number of threads
vector add<<<1,32>>>(d a, d b, d c, size); thread id

GPU Memory

CPU Memory:

Fast: Low Latency

Easily saturated: Low Bandwidth
Scales well: up to 1 TB

DDR

2-lane straight highway
driven on by sports cars

CPU GPU

System Memory Graphics Memory

Different technologies

GPU Memory:

slow: High Latency

hard to saturate: High Bandwidth
doesn’t scale: 32 GB

GDDR, HBM

16-lane highway on a windy
road driven by semi trucks

GPU Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

CPU

System Memory

GPU

Graphics Memory

Preemption and concurrency?

GPU

Graphics Memory

warp 0
warp 1

warp 2

<A NVIDIA.

CUDA.

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

warp 0

GPU

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

memory access warp 1

600 cycl '
cycles B We can hide latency through

preemption and concurrency!
warp 0

<A NVIDIA.

GPU

CUDA.

Graphics Memory

Preemption and concurrency?

memory access
600 cycles

warp 0

GPU

Graphics Memory

warp 1

warp 2

<A NVIDIA.

CUDA.

preempt warp O
and put warp 1 on

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

warp 1

GPU

Graphics Memory

warp 2

warp 0

<A NVIDIA.

CUDA.

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

memory access
600 cycles

warp 1

GPU

Graphics Memory

warp 2

warp 0

<A NVIDIA.

CUDA.

preempt warp 1
and put warp 2 on

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

warp 2

GPU

Graphics Memory

warp 0

warp 1

<A NVIDIA.

CUDA.

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

memory access
600 cycles

warp 2

GPU

Graphics Memory

warp 0

warp 1

<A NVIDIA.

CUDA.

preempt warp 2
and put warp 0 on

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

Hey, my memory has arrived!

We can hide latency through

warp 1 .
preemption and concurrency!

warp 0 warp 2

<ANVIDIA.

GPU

CUDA.

Graphics Memory
preempt warp 2

and put warp 0 on

Preemption and concurrency?

Instruction Buffer But wait, | thought preemption was expensive?
Warp Scheduler

Dispatch Unit Dispatch Unit

Registers all stay on chip

Core Core Core Core LDIST SFU
Core Core Core Core SFU
Core Core Core Core SFU
Core Core Core Core SFU
Core Core Core Core SFU
Core Core Core Core SFU
Core Core Core Core SFU

Core Core Core Core SFU

Preemption and concurrency?

Warp Scheduler

Dispatch Unit
&+

Dispatch Unit
1

Register File (16,384 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

But wait, | thought preemption was expensive?

dedicated scheduler logic

Preemption and concurrency?

- InstructionBuffer But wait, | thought preemption was expensive?

Warp Scheduler

Dispatch Unit Dispatch Unit
' s .
bound on number of warps: 32

Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function
Lets launch with 32 warps

vector add<<<1,1024>>>(d a, d b, d c, size);

Go back to our program

* What performance were we at?

Schedule

* Review previous optimizations
* New optimizations

* Advanced GPU topics

Schedule

* Review previous optimizations
* New optimizations

* Advanced GPU topics

Optimizing memory accesses

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Optimizing memory accesses

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

Optimizing memory accesses

Dispatch Unit
.

Dispatch Unit
£

Register File (16,384 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

This is the instruction cache... Why doesn’t every core have a instruction
buffer to keep track of its program?

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

. Groups of 32 threads are called a “warp”
Warp execution

They are executed in lock-step, i.e. they all execute

the same instruction at the same time
Instruction Buffer

Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Groups of 32 threads are called a “warp”

Wa I p exe C U t I O N They are executed in lock-step, i.e. they all execute

the same instruction at the same time

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

Program:
L int variablel = b[0];

int variable2 = c[0];
int variable3 = variablel + variable?2;
Core Core Core a[0] = variable3;

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Groups of 32 threads are called a “warp”

Wa I p exe C U t I O N They are executed in lock-step, i.e. they all execute

the same instruction at the same time

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

Program:
L int variablel = b[0];

int variable2 = c[0];
int variable3 = variablel + variable?2;
Core Core Core a[0] = variable3;

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Groups of 32 threads are called a “warp”

Warp execution

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Warp Scheduler instruction is fetched from the buffer
‘ Dispatch Unit and distributed to all the cores.
3
384 x 32-bit)
Program:
int variablel = b[0];
int variable2 = c[0];

int variable3 = variablel + variable?2;
a[0] = variable3;

Groups of 32 threads are called a “warp”

Wa I p exe C U t I O N They are executed in lock-step, i.e. they all execute

the same instruction at the same time

- Instruction Buffer
Warp Scheduler
h Uni Di h Uni . .
e e Cores can a large register file
Register File (16,384 x 32-bit) they share expensive HW units (load/store and special functions)
Program:
Core Core Core Core | LDIST SFU int variablel = b[0];

int variable2 = c[0];
int variable3 = variablel + variable?2;
Core ' Core Core Core LDIST SFU a[0] = variable3;

Core Core Core Core LDIST SFU

Core Core Core Core LOVST SFU

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Warp execution

&+

Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Instruction Buffer

Warp Scheduler All cores need to wait until all cores finish the first instruction
Dispatch Unit

Dispatch Unit
£

Register File (16,384 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Program:

int variablel = b[0];

int variable2 = c[0];

int variable3 = variablel + variable?2;
a[0] = variable3;

Groups of 32 threads are called a “warp”

Warp execution

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Warp Scheduler Start the next instruction.
Dispatch Unit
&
1384 x 32-bit)
Program:
int variablel = b[0];
int variable2 = c[0];
int variable3 = variablel + variable?2;
a[0] = variable3;

Why would we have a programming model like this?

Groups of 32 threads are called a “warp”

Warp execution

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Warp Scheduler Start the next instruction.
Dispatch Unit
&
1384 x 32-bit)
Program:
int variablel = b[0];
int variable2 = c[0];
int variable3 = variablel + variable?2;
a[0] = variable3;

Why would we have a programming model like this?
More cores (share program counters)

Can be efficient to share other hardware resources

Wa I p execu t | on Lets look closer at memory

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
. 4

Register File (16,384 x 32-bit)

Program:
onny ey Shete int variablel = b[0];
int variable2 = c[0];

int variable3 = variablel + variable?2;
Core Core Core LD/ST al 0] = variable3 ;

Core Core Core LDIST

Core Core Core LDIST

Core Core Core . .
4 cores are accessing memory. what happens if

Core Core Core they access the same value?

Core Core Core

Core Core Core

4 cores are accessing memory. What can happen

GPU Memory

4 cores are accessing memory. What can happen

GPU Memory
All read the same value

a[0] a[0] a[0] a[0]

4 cores are accessing memory. What can happen

All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

broadcast

GPU Memory

a[0]

a[0]

a[0] a[0]

a[0]

4 cores are accessing memory. What can happen

All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

broadcast

GPU Memory

a[0]

a[0]

a[0] a[0]

a[0]

4 cores are accessing memory. What can happen

GPU Memory
Read contiguous values

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

GPU Memory

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes
a[0]

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

GPU Memory

a[0-4]

a[0] a[1] al2] a[3]

4 cores are accessing memory. What can happen

Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

stream

GPU Memory

a[0]

a[0-4]

a[1] al2]

a[3]

4 cores are accessing memory. What can happen
GPU Memory

Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] aly] a[z] a[w]

4 cores are accessing memory. What can happen
GPU Memory
Read non-contiguous values
Not good!
a[x-(x+4)]

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] aly] a[z] a[w]

4 cores are accessing memory. What can happen
GPU Memory
Read non-contiguous values
Not good!
aly-(y+4)]

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] aly] a[z] a[w]

4 cores are accessing memory. What can happen
GPU Memory
Read non-contiguous values
Not good!
alz-(z+4)]

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] aly] a[z] a[w]

4 cores are accessing memory. What can happen
GPU Memory
Read non-contiguous values
Not good!
a[w-(w+4)]

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] aly] a[z] a[w]

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function

vector add<<<1,1024>>>(d a, d b, d c, size);

Chunked Pattern

Computation
can easily be
divided into
threads

Thread O - Blue
Thread 1 -
Thread 2 - Green
Thread 3 - Orange

array a

+ +
array b

array c

+ + +

Chunked Pattern

Computation
can easily be
divided into
threads

Thread O - Blue
Thread 1 -
Thread 2 - Green
Thread 3 - Orange

array a

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

Ol

+ +
array b

+ + +

array c

Chunked Pattern

array a

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

Computation

can easily be array b + +
divided into

+ + +

threads ..-.

Thread O - Blue
Thread 1 -
Thread 2 - Green - -

Thread 3 - Orange array ¢
R

How can we fix this

4 cores are accessing memory. What can happen
GPU Memory

Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] aly] a[z] a[w]

4 cores are accessing memory. What can happen

Read non-contiguous values
Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

GPU Memory

a[0]

a[chunk*1] a[chunk*2]

a[chunk*3]

4 cores are accessing memory. What can happen
GPU Memory
Read non-contiguous values
Not good!
a[0-4]

Accesses are Serialized.
You need 4 requests to GPU memory

al0] a[chunk*1] a[chunk*2] a[chunk*3]

4 cores are accessing memory. What can happen

Read non-contiguous values
Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

GPU Memory

a[0]

a[chunk -|(chunk+4)]

a[chunk*1] a[chunk*2]

a[chunk*3]

4 cores are accessing memory. What can happen

Read non-contiguous values
Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

GPU Memory

a[0]

a[2*chunk|- (2*chunk+4)]

a[chunk*1] a[chunk*2]

a[chunk*3]

4 cores are accessing memory. What can happen

Read non-contiguous values
Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

GPU Memory

a[0]

a[3*chunk - (3*chunk+4)]

a[chunk*1] a[chunk*2]

a[chunk*3]

Chunked Pattern

array a

the first element accessed
by the 4 threads sharing a
load store queue. What
sort of access is this?

Computation

can easily be array b + +
divided into

+ + +

threads ..-.

Thread O - Blue
Thread 1 -
Thread 2 - Green - -

Thread 3 - Orange array ¢
R

How can we fix this

Stride Pattern

Computation
can easily be
divided into
threads

Thread O - Blue
Thread 1 -
Thread 2 - Green
Thread 3 - Orange

array a

array b

array c

Stride Pattern

Computation
can easily be
divided into
threads

Thread O - Blue
Thread 1 -
Thread 2 - Green
Thread 3 - Orange

array a

array b

array c

What sort of pattern is this?

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int chunk size = size/blockDim.x;
int start = chunk size * threadIdx.x;
int end = start + end;
for (int i1 = start; 1 < end; i++) {
d a[i] = d b[i] + d c[1];

calling the function Lets change this to a stride pattern

vector add<<<1,1024>>>(d a, d b, d c, size);

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
for (int i1 = threadIdx.x; i1 < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

calling the function

vector add<<<1,1024>>>(d a, d b, d c, size);

Stride Pattern

Computation
can easily be
divided into
threads

Thread O - Blue
Thread 1 -
Thread 2 - Green
Thread 3 - Orange

array a

array b

array c

What sort of pattern is this?

Coalesced memory accesses

Lets try it! What do we think?

Coalesced memory accesses

Lets try it! What do we think?
()

\—

What else can we do?

Good time for a break

* 5 minute break

Multiple streaming multiprocessors

We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SM's
big ML GPUs have 32. My little GPU has 4

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispateh Unit
I £

Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Multiple streaming multiprocessors

We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SM's
big ML GPUs have 32. My little GPU has 4

Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler

Instruction Buffer ‘ Instruction Buffer
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
I I s -

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
I - s -

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core LDIST Core Core Core LDIST Core Core | Core Core Core Core LDIST

Core Core Core Core Core Core Core Core Core Core Core Core
Core | Core | Core LDIST Core | Core | Core LD/ST Core | Core | Core LD/ST Core | Core | Core LD/ST
Core Core | Core LD/ST Core Core | Core LD/ST Core | Core | Core LD/ST Core Core | Core LD/ST
Core | Core | Core LDJST Core | Core | Core LDJST Core | Core | Core LD/ST Core | Core | Core LD/ST
Core Core Core Core Core Core Core Core Core Core Core Core
Core Core Core Core Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core Core Core Core Core

Multiple streaming multiprocessors

CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
practically no limit on blocks: launch as many as you need to map 1 thread to 1 data element

Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Uit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
* + + + * * + + * + * + + + * * * +

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Core Core
Core Core
Core Core Core Core Core
Core Core Core
Core Core Core
Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler

Dispatch Uit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Uit Dispatch Unit
* * * + * + * * * + * + + * * + * *

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core Core Core Core Core Core Core Core Core | |Core | |Core |Core LoisT Core Core Core Core Core | Core Core | Core | |Core |Core LoisT Core Core

Core Core Core
Core Core Core
Core Core Core
Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core
Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core [0 Core Core Core Core
Core Core Core

Core Core Core

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
for (int i1 = threadIdx.x; i < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

id within the block
calling the function

vector add<<<1,1024>>>(d a, d b, d c, size);

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d c,
for (int i1 = threadIdx.x; i < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

id within the block threads per block

calling the function

vector add<<<1,1024>>>(d a, d b, d c, size);

int size) {

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
for (int i1 = threadIdx.x; i1 < size; i+=blockDim.x) {
d a[i] = d b[i] + d c[1];
}
}

calling the function
Launch with many thread blocks

vector add<<<1,1024>>>(d a, d b, d c, size);

Go back to our program

__global _ void vector add(int * d a, int * d b, int * d ¢, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
d a[i] = d b[i] + d c[1];

}

Need to recalculate some thread ids.
calling the function

Launch with many thread blocks

vector add<<<1024,1024>>>(d a, d b, d c, size);
Now we have 1 thread for each element

#define SIZE (1024%1024)

thread ids

threadldx.x is thread id within a block

example threadldx.x ==

Instruction Buffer
Warp Scheduler

Instruction Buffer
Warp Scheduler

Instruction Buffer
Warp Scheduler

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
I -

Dispatch Unit Dispatch Unit
s -

Dispatch Unit Dispatch Unit
I -

Dispatch Unit Dispatch Unit
s -

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core Core Core Core Core | Core LD/ST Core Core Core

Core Core Core Core Core Core Core Core Core Core Core Core

Core Core LDIST Core Core LDIST Core Core LD/ST Core Core LD/ST

Core Core LDIST Core Core LDIST Core Core LD/ST Core Core LD/ST

Core Core LDIST Core Core LD/ST Core Core LD/ST Core Core LD/ST

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

blockldx.x == blockldx.x == blockldx.x == blockldx.x ==

How to get a unique id per thread?

thread ids

threadldx.x is thread id within a block

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;

example threadldx.x ==

Instruction Buffer
Warp Scheduler

Instruction Buffer
Warp Scheduler

Instruction Buffer
Warp Scheduler

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit
I I

Dispatch Unit Dispatch Unit
s -

Dispatch Unit Dispatch Unit
I -

Dispatch Unit Dispatch Unit
s -

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core LDIST Core Core Core LDIST Core Core | Core Core Core Core LDIST

Core Core Core Core Core Core Core Core Core Core Core Core

Core Core LDIST Core Core LDIST Core Core LD/ST Core Core LD/ST

Core Core LDIST Core Core LDIST Core Core LD/ST Core Core LD/ST

Core Core LDIST Core Core LD/ST Core Core LD/ST Core Core LD/ST

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core LD/ST Core Core

blockldx.x == blockldx.x == blockldx.x == blockldx.x ==

Final Round

The CPU in
my professor
workstation

The GPU in
my PhD laptop

LB B R B B B B O
INTEL(R) CORE™ i7
i7-9700K

<

NVIDIA. SRS63 3.60GHZ

X930F139

GeFonrce
40m

Nvidia 940m :
1.8 Billion t - Intel i7-9700K
. Hion transistors - .
75 TDP 2.16 Billion transistors
95 TDP
ESt. $13O https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html ESt $3 16

https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Final Round

Nearly 4x faster!!

Fight' The CPU in
The GPU in my professor
my PhD laptop ‘ workstation

LB B R B B B B O
INTEL(R) CORE™ i7
i7-9700K

<

NVIDIA. SRS63 3.60GHZ

X930F139

GeFonrce
40m

Nvidia 940m :
1.8 Billion t - Intel i7-9700K
. Hion transistors - .
75 TDP 2.16 Billion transistors
95 TDP
ESt. $13O https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html ESt $3 16

https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Schedule

* Review previous optimizations
* New optimizations

* Advanced GPU topics

Schedule

* Review previous optimizations
* New optimizations

* Advanced GPU topics

~_global

— | void diverged (...) {
arp Scheduler ,
oispa:h Unit Dispatih Unit | if (thre adIdX o 4 < :l_ 6) {
Register File (32,768 x 32-bit) | / / Do some work
Core ‘ }
o else {
— // Do something else
}

Core

O
e
©

Core

Core

Core

Core

O
9
[

Instruction Cache [] global

vold diverged (...) {
1f (threadIdx.x < 16) {
Do some work

}
else {
Threads 0-16 // Do something else
}
Threads 16-32 CANNOT execute them
in parallel!

L1 cache [1]

Dispatch Unit Dispatch Unit
3 ES

Register File (32,768 x 32-bit)

Shared Memory []

[]

Instruction Cache

Dispatch Unit Dispatch Unit
3 ES

Register File (32,768 x 32-bit)

Threads 0-16

L1 cache [1]

Shared Memory []

~_global
vold diverged (...) {

1f (threadIdx.x < 16)
Do some work

}

else {
// Do something else

{

Instruction Cache [] global

vold diverged (...) {
1f (threadIldx.x < 16) {
// Do some work

}
else {
// Do something else
}
|IIIIIIHHHHHHH%||iiiii

L1 cache [1]

Dispatch Unit Dispatch Unit
3 ES

Register File (32,768 x 32-bit)

Shared Memory []

— | Warp scheduler keeps a bitmask for each warp
Warp Scheduler Example:
s Hewene [0110..] > execute thread 1 and 2, no-op the rest

Register File (32,768 x 32-bit)

Core

Core

How is the bit vector initialized?

Core

Core

Do “only” need a bit vector?

Pretend we have a warp size of 16

Bit vector stack for warp O

(1 1111111111111 1]

__global
vo1d diverged2 (...) {
3T (threadldx.:x < @) {1
// Work O
if (threadIdx.x == 3) {
// Work 1

}
// Work 2

}

else {
// Work 3

}

Pretend we have a warp size of 16

Bit vector stack for warp O
(1 1 1111111111111 1]

__global (111111110000000 0]

volid diverged2 (...) {
3T (threadldx.:x < @) {1 Push on the stack for if
// Work O
1f (threadldx.x == 3) {
// Work 1

}
// Work 2

}

else {
// Work 3

}

Pretend we have a warp size of 16

Bit vector stack for warp O
(1 1 1111111111111 1]

__global 111111110000000 0]

vo1d diverged2 (...) {
if (threadIdx.x < 8) { (0001 0000O0O0CO00O0OO0O0O0 0]
// Work O
1Ff (threadldx.x == 3} {
// Work 1

}
1 F Wark 2

}

else {
// Work 3

}

Pretend we have a warp size of 16

Bit vector stack for warp O
(1 1 1111111111111 1]

__global 111111110000000 0]

vo1d diverged2 (...) {
AT (tChreadldx.x €< @) 4
// Work O
1Ff (threadldx.x == 3} {
// Work 1
}
// Work 2 Pop the stack

}

else {
// Work 3

}

Pretend we have a warp size of 16

Bit vector stack for warp O
(t 11111 111111111 1]

_glekbal (00000000111 11111]

vo1d diverged2 (...) {
1if (threadlidz.x < @) {4
// Work O
3f (Ehregdldx.x =— 3y {
// Work 1

}
// Work 2

}

else {
// Work 3 Complement the top item on the stack for else

Pretend we have a warp size of 16

Bit vector stack for warp O

(1 1111111111111 1]

__global
vo1d diverged2 (...) {
3T (threadldx.:x < @) {1
// Work O
if (threadIdx.x == 3) {
// Work 1

}
// Work 2

}

else {
// Work 3

}

What about this?

__global
vold walting(.«.«)] o
if (threadIdx.x == 0){
while (global flag !'= 1); //Wait for thread 1 to set a flag
}
if (thread Idx.x == 1) {

*global flag = 1;
}

Synchronization and
Shared Memory

Instruction Buffer

Dispatch Unit

ES

Warp Scheduler

Dispatch Unit
£

Register File (32,768 x 32-bit)

Core

Synchronization and
Shared Memory

 Last part of SM architecture to talk about!

 What if program requires thread
communication?

* Threads in same warp execute “lock-step”

* BUT threads in different warps can de-sync
(execute different instructions)

Case study: Reduction

* Vector reduction: Sum up elements in array

 Parallel algorithm? Consider 4 threads

Case study: Reduction

Reduce to 4 elements by striding

Case study: Reduction

Reduce to 4 elements by striding

Use half as many threads to compute
the next round

Ca S e St u d y Re d u Ct | O n Requires synchronization between

levels!

Reduce to 4 elements by striding
Use half as many threads to compute
t0 the next round

half as many again, until single result
is reached

Demo

e Barrier

Instruction Buffer

— Shared memory (if time)

Dispatch Unit Dispatch Unit
2 £

Register File (32,768 x 32-bit)

e Software managed cache

Core

Core

* Can be used to share memory between
threads in the same block efficiently

Core

0
g
L4

Performance Portability

What about different vendors?

* AMD — warp size of 64
* Intel — warp size of 8 OR 16 depending on resource usage
* ARM - old chips do not have warps, new chips have warp size of 8

* All vendors except Nvidia have max block size of 256. ARM supports
only 128 in some cases.

* Different memory technologies (DDR, GDDR, HBM)

De rfO FrMmance Skylake CPU 45% | 28% | 14% | 21% | 2%

t bl t . Haswell CPU 4 12% | 16% | 16% | 39% | 43% | 37% | 20% | 11% | 17% | 2%
OOItadlll y 1S Very Ivy Bridge CPU - 21% | 14% | 18% | 41% | 40% | 19% | 14% | 6% | 13% 44%
difficult RX 430 2%

5 R9 Fury X 4 24% | 20% | 20% | 23% | 37%
o
i R9 290X 2%
s
= HD 7970 4 23% | 19% | 20% | 21% | 33%
-
= GTX 1080 Ti 38% | 28% 1% | 5% | 4%
GTX 980 Ti 51% 33% [49% | 36% | 5% | 5% | 5%
GTX 780 Ti 33% | 32% 5% | 5% | 4%
GTX 680 38% | 26% 1% | 5% | 4%
GTX 580 X | X | X | X | 1% | 5% | 4%
S S g & & & X &N 8 SIS B
5 8 & & S & § » ¥ & & 8
5 5§ £ § § o § &5 & 5 s
& & K K o T @ » ¥ £ F
S & K a & §F &
O S & 5
=S
S
running on

From:

“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and Mclntosh-Smith

45% | 28% | 14% | 21% | 2%

Performance Skylake CPU

Haswell CPU 4 12% | 16% | 16% | 39% | 43% | 37% | 20% | 11% | 17% | 2%

:)Ortab|||ty 1S Very Ivy Bridge CPU 4 21% | 14% | 18% | 41% | 40% | 19% | 14% | 6% | 13% 44%

RO Fury X 4 24% | 20% | 20% | 23% | 37%

—_
o
= R9 290X 2%
S
= HD 7970 4 23% | 19% | 20% | 21% | 33%
=
= GTX 1080 Ti 38% | 28% 1% | 5% | 4%
GTX 980 Ti 51% 3% | 33% | 49% | 36% | 5% | 5% | 5%
GTX 780 Ti 33% | 32% 5% | 5% | 4%
GTX 680 38% | 26% 1% | 5% | 4%
nvidia chips tuned for Nvidia gpus GTX 580 X | X | 1% | 5% | 4%

D 7970 1 >

£ & A
CJEJ(J
O N W
)
N
—
S

running on

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and Mclntosh-Smith

De rfO FrMmance Skylake CPU 45% | 28% | 14% | 21% | 2%

t bl t . Haswell CPU - 12% | 16% | 16% | 39% | 43% | 37% | 20% | 11% | 17% | 2%
OOrtaplll y 1S Very Ivy Bridge CPU 4 21% | 14% | 18% | 41% | 40% | 19% | 14% | 6% | 13% 44%
difficult RX 430 2%

" R9 Fury X { 24% | 20% | 20% | 23% | 37%
o
S R9 290X 2%
D
= HD 7970 { 23% | 19% | 20% | 21% | 33%
=
= GTX 1080 Ti 38% | 28% 1% | 5% | 4%
GTX 980 Ti 51% 33% [49% | 36% | 5% | 5% | 5%
GTX 780 Ti 33% | 32% 5% | 5% | 4%
GTX 680 38% | 26% 1% | 5% | 4%
AMD chips tuned for AMD chips GTX 580 X | X | X | X | 1% |5% | 4%
S S E & & & XN & 8 SRS S
5 S S S s & & 8" e & & &
F§ & £ 8 S5 8 &£5 § 5 s
¢ O F K x T @ 2 » £ &
& O B § F &
& S B B
=N
S
running on

From:

“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and Mclntosh-Smith

De rfO FrMmance Skylake CPU 45% | 28% | 14% | 21| 2%

t bl t . Haswell CPU 4 12% | 16% | 16% | 39% | 43% | 37% | 20% | 11% | 179} | 2%
OOrtablil y 1S Very Ivy Bridge CPU 4 21% | 14% | 18% | 41% | 40% | 19% | 14% | 6% | 13% 44%
difficult RX 450 2%

5 R Fury X 4 24% | 20% | 20% | 23% | 37%
O
= R9 290X 2%
g5
= HD 7970 4 23% | 19% | 20% | 21% | 33%
=
= GTX 1080 Ti 38% | 28% 1% | 5% | 4%
GTX 980 Ti 51% 33% | 49% | 36% | 5% | 5% | 5%
GTX 780 Ti 33% | 32% 5% | 5% | 4%
GTX 680 38% | 26% 1% | 5% | 4%
CPU chips tuned for CPUs GTX 580 X | X | X | X | 1%[|5 | 4%
S S E & & & XN & 8 SRS S
5 S S S s & & 8" e & & &
§ &§ F § $§5 85 &5 § 5 s
& ¢ A F 5 T & 9 ¥ & J
& O 5 Q §F L
O N >
=S
S
running on

From:

“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and Mclntosh-Smith

Pe rfO Fmance Skylake CPU 45% | 28% | 14% | 21% | 2%

Haswell CPU 4 12% | 16% | 16% | 39% | 43% § 37% | 20% | 11% | 17% }§ 2%

:)Ortab|||ty 1S Very Ivy Bridge CPU 4 21% | 14% | 18% | 41% | 40% | 19% | 14% | 6% | 13% ;5,3%”‘ 44%

RO Fury X 4 24% | 20% | 20% | 23% | 37%

—_
o
= R9 290X 2%
S
= HD 7970 4 23% | 19% | 20% | 21% | 33%
=
= GTX 1080 Ti 38% | 28% 1% | 5% | 4%
GTX 980 Ti 51% 153% | 33% [49% | 36% | 5% | 5% | 5%
GTX 780 Ti 33% | 32% 5% | 5% | 4%
GTX 680 38% | 26% 1% | 5% | 4%
AMD chips tuned for CPUs GTX 580 : X [X | X | X | 1% D% 4%
and Nvidia GPUS S 8 E & & & X XS Q? 5 Q?
" o S S & B 3 By o & @)
g N N © § &5 o B & v 5 @
O O & & x5 ¥ & 9 & & =
O) N V- I R~
&) A T)
S

running on

From:
“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and Mclntosh-Smith

45% | 28% | 14% | 21% | 2%

Performance Skylake CPU

Haswell CPU 4 12% | 16% | 16% | 39% | 43% | 37% | 20% | 11% | 17% | 2%

:)Ortab|||ty 1S Very Ivy Bridge CPU - 21% | 14% | 18% | 41% | 40% | 19% | 14% | 6% | 13% 53% | 44%
difficult... RX 480 2%

RO Fury X 4 24% | 20% | 20% | 23% | 37%

—_
o)
= R9 290X 2%
S
z HD 7970 4 23% | 19% | 20% | 21% | 33%
=
= GTX 1080 Ti 38% | 28% 1% | 5% | 4%
GTX 980 Ti 51% '53% | 33% | 49% | 36% | 5% | 5% | 5%
GTX 780 Ti 33% | 32% 5% | 5% | 4%
GTX 680 38% | 26% 1% | 5% | 4%
CPU chips tuned for Nvidia and AMD GTX 580 X | X | X | X | 1%]| 5% | 4%
GPUs S S B o B o B o= B S .
& S S S S ,é? S & ¥ & & &
E & & 9 & g & & 5 > & <
g & & H o % & 3 L £ 7
& & A o s & £
&) NG &
-
S
running on
From:

“Analyzing and improving performance portability of OpenCL applications via auto-tuning” by Price and Mclntosh-Smith

Putting it all together:

- GPUs are programmed as external
accelerators: Host must manage memory!

- threads execute in groups of 32 (or
1,8,16,64) called a warp.

- Parallelism across warps hides latency
- Access memory in strided patterns
- Use many blocks!

- Synchronization available across threads in
the same block

Further readings

>

=

BY EXAMPLE

An Introduction to General-Purpose
GPU Programming

Programming Massively
Parallel Processors

ands-on Approac
JASON SANDERS A Hands-on Approach

EDWARD KANDROT

, i
y e‘ MORGAN & CLAYPOOL PUBLISHERS

General-Purpose
Graphics Processor
Architectures

Tor M. Aamodt
Wilson Wai Lun Fung
Timothy G. Rogers

SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
| M Mot S e i

Catred g et armm el o soveiad

On Thursday

* Reese will talk about distributed computing!

 Office hours on Wednesday will be joint (go over homework
guestions)

