
Message Passing
Concurrency

An alternative to shared memory

Hugues Evrard, Google

Opinions are my own and not the
views of my employer.

whoami

Hugues (“Hugh”) Evrard

Concurrency, Formal methods, GPU

Agenda

● Shared memory vs. message passing
● Taxonomy of message passing semantics
● Examples: bank account, barrier
● Concurrency: a very brief history
● Synchronous channels (CSP, Golang)
● Actor model (Erlang)
● Hardware

Process: an instance executing a program

In practice: “a program counter and a stack”

● OS process, thread, programming language runtime routine, etc...

Definition of process for this talk

What is message passing?

Inter-process communication & synchronization

Shared memory

P1 P2

cache cache

memory

Message Passing

P1 P2

primitives: read / write primitives: send / receive

Hello

Bonjour

Why use message passing?

read,write,
...

Inter-process communication & synchronization

Shared memory

P1

resource

read,write,
...

Inter-process communication & synchronization

Shared memory

P1 P2

resource

read,write,
...

read,write,
...

Inter-process communication & synchronization

Shared memory

P1 P2

resource

read,write,
...

read,write,
...

Inter-process communication & synchronization

Shared memory

P1 P2

mutex mis-management:
deadlocks / data corruption

resource
mutex

read,write,
...

⚠

read,write,
...

Inter-process communication & synchronization

Shared memory

P1 P2

Message Passing

P1 P2

mutex mis-management:
deadlocks / data corruption

● Primitives: send / receive
● Memory is isolated, per-process

Hello

Bonjour

resource
mutex

read,write,
...

⚠

read,write,
...

Inter-process communication & synchronization

Shared memory

P1 P2

Message Passing

P1 P2

mutex mis-management:
deadlocks / data corruption

● Primitives: send / receive
● Memory is isolated, per-process
● Only possible interaction is MP

Hello

Bonjour

resource
mutex

read,write,
...

⚠

read,write,
...

Inter-process communication & synchronization

Shared memory

P1 P2

Message Passing

P1 P2

mutex mis-management:
deadlocks / data corruption

● Primitives: send / receive
● Memory is isolated, per-process
● Only possible interaction is MP
● Cannot tamper a process without

itself knowing it

Hello

Bonjour

resource
mutex

read,write,
...

⚠

Message passing
semantics taxonomy

Semantics: synchronous / asynchronous

Synchronous

P1 {
 send(P2, “hi”);
 B();
}

P2 {
 A();
 recv();
}

P1 P2

hi
send recv

B

A

Asynchronous

P1 P2

hi
send

recv

B

A

time

P1 {
 send(P2, “hi”);
 recv();
 A();
}

Semantics: asynchronous: reliable / unreliable

Reliable

P2 {
 recv();
 send(P1, “hola”);
}

P1 P2
hi

send recv

time

hola
recv

send

A

Unreliable
P1 P2

hi
send recv

hola
recv

send

wait forever?

P1 {
 send(P2, “hi”);
 recv(timeout=1s);
 A();
}

Semantics: asynchronous: reliable / unreliable

Reliable

P2 {
 recv(timeout=1s);
 send(P1, “hola”);
}

P1 P2
hi

send recv

time

hola
recv

send

A

Unreliable
P1 P2

hi
send recv

hola
recv send

A

(timeout)

Semantics: asynchronous: ordered / unordered

Ordered

P1 {
 send(P2, “A”);
 send(P2, “B”);
}

P2 {
 a = recv();
 b = recv();
}

P1 P2

A
send recv

time

B
send recv

a = A

b = B

Unordered

P1 P2

Asend

recv
B

send

recv

a = B

b = A

Message order with more than 2 processes

Synchronous

P1 {
 send(P3, “A”);
 send(P2, “B”);
}

P2 {
 recv();
 send(P3, “C”);
}

P1 P2

send

time

send recv

P3 {
 recv();
 recv();
}

P3

recv

send recv

A

B

C

A

C

Message order with more than 2 processes

Synchronous

P1 {
 send(P3, “A”);
 send(P2, “B”);
}

P2 {
 recv();
 send(P3, “C”);
}

P1 P2

send

time

send recv

P3 {
 recv();
 recv();
}

P3

recv

send recv

A

B

C

Asynchronous, ordered

P1 P2

send

send recv

P3

recv

send recv

A
B

C

A

C

A

C

What to you send to?

So far, examples use a process identifier

An alternative is to use channels

● named object to which you can send / receive
● channels can be first-class citizens (you can assign

them to variables and pass them around)

P1 {
 send(P2, “foo”);
}

P1 (ch: channel) {
 send(ch, “bar”);
 ch2 = recv(ch);
 send(ch2, “baz”);
}

What does recv() means?

● Causality: some process did a send() before
● If synchronous:

○ the sender has been blocking on send()
○ the sender is now aware of the reception

Can you selectively receive?

● General recv(): receive any message, from any process

Can you selectively receive?

● General recv(): receive any message, from any process
● Can you selectively receive:

○ From only a specific process / channel?

ch1, ch2, ch3

select {
case recv(ch1): …
case recv(ch2): …
}
recv(ch3);

Can you selectively receive?

● General recv(): receive any message, from any process
● Can you selectively receive:

○ From only a specific process / channel?
○ Only receive certain values of messages? (“guarded commands”)

ch1, ch2, ch3

select {
case recv(ch1): …
case recv(ch2): …
}
recv(ch3);

ch1, ch2, ch3

select {
case i := recv(ch1) where i > 5: // send(ch1, 2) would block
 …
case recv(ch2):
 …
}
recv(ch3);

Message passing semantics: recap
Message passing can be:

● Synchronous
○ Sender/receiver both blocks waiting for the other one

● Asynchronous
○ reliable or not
○ ordered or not

● Send to process identifiers or first-class citizen channels
● Ability to selectively receive, or not

Message passing semantics: recap
Message passing can be:

● Synchronous
○ Sender/receiver both blocks waiting for the other one

● Asynchronous
○ reliable or not
○ ordered or not

● Send to process identifiers or first-class citizen channels
● Ability to selectively receive, or not
● Also

○ unidirectional / bidirectional, whole/partial message, …
○ can express asynchronous on top of synchronous (easy) and vice-versa (harder)

Message passing semantics: recap
Message passing can be:

● Synchronous
○ Sender/receiver both blocks waiting for the other one

● Asynchronous
○ reliable or not
○ ordered or not

● Send to process identifiers or first-class citizen channels
● Ability to selectively receive, or not
● Also

○ unidirectional / bidirectional, whole/partial message, …
○ can express asynchronous on top of synchronous (easy) and vice-versa (harder)

Network protocols:

- UDP: asynchronous, unordered, unreliable

- TCP: asynchronous, ordered, reliable (🤞)

Examples

get_paid

buy_coffee

Example: bank account

bank_account

balance

bank_account (get_paid, buy_coffee: channel int) {
 balance = 0
 for {
 select {

 case i = recv(get_paid):
 balance += i

 case i = recv(buy_coffee):
 balance -= i

 }
 }
}

buy_coffee

bank_account (get_paid, buy_coffee: channel int) {
 balance = 0
 for {
 select {

 case i = recv(get_paid):
 balance += i

 case i = recv(buy_coffee):
 balance -= i

 }
 }
}

get_paid

Example: bank account with guarded reception

bank_account (get_paid, buy_coffee: channel int) {
 balance = 0
 for {
 select {

 case i = recv(get_paid):
 balance += i

 case i = recv(buy_coffee) where i <= balance:
 balance -= i

 }
 }
}

bank_account

balance

Avoids negative balance

But: if synchronous, sender will block!

It may be OK, as it will block until get_paid
adds enough money to unblock.

set

Shared resources become processes

P1 P2

resource1
mutex

resource2
mutex

P2

resource1

P1

get ...

resource2

... ...

Example: barrier

P2P1

Barrier

P3

Barrier (n: int, ch: channel) {
 for (i = 0; i < n; i++) {
 recv(ch)
 }
 for (i = 0; i < n; i++) {
 send(ch)
 }
}

P (ch: channel) {
 ...
 // barrier synchronization
 send(ch)
 recv(ch)
 ...
}

Step back:
Why concurrent programming?

Why concurrent programming? A very brief history
● 40s: single processor, “batch” execution of single program

IBM 1401, http://ed-thelen.org/comp-hist/BRL61-0526.jpg

Why concurrent programming? A very brief history
● 40s: single processor, “batch” execution of single program
● 60s: time sharing on a single processor

Dave Winer, https://en.wikipedia.org/wiki/File:Unix_Timesharing_UW-Madison_1978.jpeg

Terminals to the
same server

https://en.wikipedia.org/wiki/File:Unix_Timesharing_UW-Madison_1978.jpeg

Why concurrent programming? A very brief history
● 40s: single processor, “batch” execution of single program
● 60s: time sharing on a single processor
● 65: Dijkstra’s Solution of a problem in concurrent programming control

Why concurrent programming? A very brief history
● 40s: single processor, “batch” execution of single program
● 60s: time sharing on a single processor
● 65: Dijkstra’s Solution of a problem in concurrent programming control
● 70s: single processors talk over networks
● 78: Hoare’s Communicating Sequential Processes
● 87: Erlang
● 2000s: multi-core processors with shared memory

Decades before shared-memory multi-core processors,
concurrency mattered as a way to design programs.

Synchronous channels

Programming languages with synchronous channels
● Incomplete timeline:

○ ...
○ 78, Tony Hoare: CSP
○ 83, David May: occam
○ (83, Jean Ichbiah: Ada)
○ 88, Rob Pike: Newsqueak
○ 95, Phil Winterbottom: Alef
○ 96, Doward, Pike, Winterbottom: Limbo
○ 09, Griesmer, Pike, Thompson: Golang

Programming languages with synchronous channels
● Incomplete timeline:

○ ...
○ 78, Tony Hoare: CSP
○ 83, David May: occam
○ (83, Jean Ichbiah: Ada)
○ 88, Rob Pike: Newsqueak
○ 95, Phil Winterbottom: Alef
○ 96, Doward, Pike, Winterbottom: Limbo
○ 09, Griesmer, Pike, Thompson: Golang

“Bell Labs” family

Programming languages with synchronous channels
● Incomplete timeline:

○ ...
○ 78, Tony Hoare: CSP
○ 83, David May: occam
○ (83, Jean Ichbiah: Ada)
○ 88, Rob Pike: Newsqueak
○ 95, Phil Winterbottom: Alef
○ 96, Doward, Pike, Winterbottom: Limbo
○ 09, Griesmer, Pike, Thompson: Golang

“Bell Labs” family

● As a library:
○ mid-90s: Java CSP
○ 2013: Clojure core.async
○ …

Programming languages with synchronous channels
● Incomplete timeline:

○ ...
○ 78, Tony Hoare: CSP
○ 83, David May: occam
○ (83, Jean Ichbiah: Ada)
○ 88, Rob Pike: Newsqueak
○ 95, Phil Winterbottom: Alef
○ 96, Doward, Pike, Winterbottom: Limbo
○ 09, Griesmer, Pike, Thompson: Golang

“Bell Labs” family

● As a library:
○ mid-90s: Java CSP
○ 2013: Clojure core.async
○ …

The roots of this style go back at least as far as Hoare’s Communicating

Sequential Processes (CSP), followed by realizations and extensions in e.g. occam,

Java CSP and the Go programming language.

[...] the notion of a channel becomes first class […]

A key characteristic of channels is that they are blocking. [...]

https://clojure.org/news/2013/06/28/clojure-clore-async-channels

https://clojure.org/news/2013/06/28/clojure-clore-async-channels

Programming languages with synchronous channels
● Incomplete timeline:

○ ...
○ 78, Tony Hoare: CSP
○ 83, David May: occam
○ (83, Jean Ichbiah: Ada)
○ 88, Rob Pike: Newsqueak
○ 95, Phil Winterbottom: Alef
○ 96, Doward, Pike, Winterbottom: Limbo
○ 09, Griesmer, Pike, Thompson: Golang

● Golang channels: bidirectional, typed,
optionally buffered (i.e. asynchronous),
selectively receive (no guards).

“Bell Labs” family

● As a library:
○ mid-90s: Java CSP
○ 2013: Clojure core.async
○ …

// This is Golang code

func counter(ch chan int) {
 i := 1;
 for {
 i++;
 ch <- i // send
 }
}

func main() {
 ch := make(chan int) // create a channel
 go counter(ch); // launch a process
 j := <-ch // recv, j == 2
 j = <-ch // j == 3
 j = <-ch // j == 4
}

Programming languages with synchronous channels
● Incomplete timeline:

○ ...
○ 78, Tony Hoare: CSP
○ 83, David May: occam
○ (83, Jean Ichbiah: Ada)
○ 88, Rob Pike: Newsqueak
○ 95, Phil Winterbottom: Alef
○ 96, Doward, Pike, Winterbottom: Limbo
○ 09, Griesmer, Pike, Thompson: Golang

● Golang channels: bidirectional, typed,
optionally buffered (i.e. asynchronous),
selectively receive (no guards).

https://play.golang.org/p/1PE4jTg1tNa

https://play.golang.org/p/1PE4jTg1tNa

2

Example: prime sieve (McIlroy)

Generator

2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

3

3
2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

3

3
2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3

3
2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3
4

5 5

3
2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3
4

5

5 5

3
2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3
4

Filter(5)

5

5 5

3
2

Example: prime sieve (McIlroy)

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3
4

Filter(5) Filter(7)

5
6
7 7 7 7 ...etc...

Filter(7)

5 5

3
2

Example: prime sieve (McIlroy)

func filter(prime int,
 src, next chan int) {
 for {
 i := <-src
 if (i % prime) != 0 {
 next <- i
 }
 }
}

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3
4

Filter(5)

5
6
7 7 7 7 ...etc...

Filter(7)

5 5

3
2

Example: prime sieve (McIlroy)

func filter(prime int,
 src, next chan int) {
 for {
 i := <-src
 if (i % prime) != 0 {
 next <- i
 }
 }
}

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3
4

Filter(5)

5
6
7 7 7 7

func sieve(result chan int) {
 ch := make(chan int)
 go counter(ch)
 for {
 i := <-ch
 result <- i
 next := make(chan int)
 go filter(i, ch, next)
 ch = next
 }
}

...etc...

Filter(7)

5 5

3
2

Example: prime sieve (McIlroy)

func filter(prime int,
 src, next chan int) {
 for {
 i := <-src
 if (i % prime) != 0 {
 next <- i
 }
 }
}

Generator

Filter(2):
if ((i % 2) != 0)
 forward
else
 drop

Filter(3)3
4

Filter(5)

5
6
7 7 7 7

func sieve(result chan int) {
 ch := make(chan int)
 go counter(ch)
 for {
 i := <-ch
 result <- i
 next := make(chan int)
 go filter(i, ch, next)
 ch = next
 }
}

func main() {
 r := make(chan int)
 go sieve(r)
 <-r // 2
 <-r // 3
 <-r // 5
 <-r // 7
 <-r // 11
 <-r // 13
}

https://play.golang.org/p/xDKhkm6ZDIa

...etc...

https://play.golang.org/p/xDKhkm6ZDIa

Golang is not “purely” message passing

● You can have shared memory, mutexes, etc
● This is discouraged

Do not communicate by sharing memory; instead, share memory by communicating.

https://blog.golang.org/codelab-share

https://blog.golang.org/codelab-share

Asynchronous, “pure”
message passing

(Actor model)
Concurrency for reliability

(Actor model)
Concurrency for reliability

Asynchronous, “pure”
message passing

Origin: reliability

Thesis: “Making reliable distributed systems in the presence of software errors”

Machine 1

Origin: reliability

Thesis: “Making reliable distributed systems in the presence of software errors”

Machine 1Crash!

Origin: reliability

Thesis: “Making reliable distributed systems in the presence of software errors”

Machine 1 Machine 2Crash!

● Need at least 2 separate machines

Origin: reliability

Thesis: “Making reliable distributed systems in the presence of software errors”

Machine 1 Machine 2Crash!

● Need at least 2 separate machines
● Do not share memory
● Send messages over a network

Origin: reliability

Thesis: “Making reliable distributed systems in the presence of software errors”

Machine 1 Machine 2Crash!

● Need at least 2 separate machines
● Do not share memory
● Send messages over a network
● Synchronous? No! If sender/receiver crashes, the other deadlocks
● Asynchronous message passing between isolated processes

Origin: reliability

Thesis: “Making reliable distributed systems in the presence of software errors”

Machine 1 Machine 2Crash!

● Need at least 2 separate machines
● Do not share memory
● Send messages over a network
● Synchronous? No! If sender/receiver crashes, the other deadlocks
● Asynchronous message passing between isolated processes

The process provides a clean unit of modularity, service, fault containment and failure.

Fault containment through fail-fast software modules. The process achieves fault

containment by sharing no state with other processes; its only contact with other

processes is via messages carried by a kernel message system.

1985, Jim Gray: Why do computers stop and what can be done about it?

A taste of Erlang
● Sequential part: functional programming foo() -> … // define func foo with arity 0

A taste of Erlang
● Sequential part: functional programming
● MP is only possible interaction,

strictly no shared memory
● MP: asynchronous, ordered, unreliable

○ “Send and pray”

foo() -> … // define func foo with arity 0

Pid = spawn(foo/0) // launch a process, get its ID

Pid ! msg // send a message to Pid

A taste of Erlang
● Sequential part: functional programming
● MP is only possible interaction,

strictly no shared memory
● MP: asynchronous, ordered, unreliable

○ “Send and pray”
● Powerful receive primitive:

○ Pattern-matching
○ Guards
○ Timeout

foo() -> … // define func foo with arity 0

Pid = spawn(foo/0) // launch a process, get its ID

Pid ! msg // send a message to Pid

receive // pattern-matching guarded recv
 Pattern [when Guard] -> …
 Pattern [when Guard] -> …
 after timeout -> …
end

A taste of Erlang
● Sequential part: functional programming
● MP is only possible interaction,

strictly no shared memory
● MP: asynchronous, ordered, unreliable

○ “Send and pray”
● Powerful receive primitive:

○ Pattern-matching
○ Guards
○ Timeout

● Fail-fast, “let it crash”
● Crash propagated to linked processes
● Crash notification as a message to

monitoring processes

foo() -> … // define func foo with arity 0

Pid = spawn(foo/0) // launch a process, get its ID

Pid ! msg // send a message to Pid

receive // pattern-matching guarded recv
 Pattern [when Guard] -> …
 Pattern [when Guard] -> …
 after timeout -> …
end

P = spawn_link(foo/0) // P crash ⇒ local crash

Ref = monitor(P) // if P crash, local recv msg

A taste of Erlang Elixir
● Sequential part: functional programming
● MP is only possible interaction,

strictly no shared memory
● MP: asynchronous, ordered, unreliable

○ “Send and pray”
● Powerful receive primitive:

○ Pattern-matching
○ Guards
○ Timeout

● Fail-fast, “let it crash”
● Crash propagated to linked processes
● Crash notification as a message to

monitoring processes

foo() -> … // define func foo with arity 0

Pid = spawn(foo/0) // launch a process, get its ID

Pid ! msg // send a message to Pid

receive // pattern-matching guarded recv
 Pattern [when Guard] -> …
 Pattern [when Guard] -> …
 after timeout -> …
end

P = spawn_link(foo/0) // P crash ⇒ local crash

Ref = monitor(P) // if P crash, local recv msg

The new cool kid on top of Erlang VM!

(nicer syntax, similar concepts)

Error containment: supervision trees

server

client

client client

client

task

task

tasklink

monitor

task
task

task

Error containment: supervision trees

server

client

client client

client

task

task

tasklink

monitor

task
task

task

Error containment: supervision trees

server

client

client client

client

task

task

tasklink

monitor

task
task

task

A task crash cannot corrupt the state of
the server. Server can restart the task,
or return a “request failed” to the client.

Is Erlang used in industry?

● Telecom companies
○ Ericsson (this is where it started! Ericsson Language)
○ Nortel, T-Mobile, …
○ Reliability first! 99,999% uptime needed
○ Erlang VM can do hot code reload, no downtime

● WhatsApp, 2015: 50 engineers, 900 millions users (Wired article)
● Heroku
● Discord (elixir)
● AliBaba
● EaseMob (Chinese comm framework, reportedly 1 billion users)
● RabbitMQ
● ...

https://www.wired.com/2015/09/whatsapp-serves-900-million-users-50-engineers/

Hardware

Message passing at the hardware level

P1 P2

cache cache

memory

Pn

cache

...

...

Memory coherency: hard to scale!
Nowadays, n < 100

Message passing at the hardware level

P1 P2

cache cache

memory

Pn

cache

...

...

Memory coherency: hard to scale!
Nowadays, n < 100

P1
P2

P3

P4

Pn

On the same chip / over a network
n > 100

...

Massively parallel processor array (MPPA)

https://spellfoundry.com/wp/wp-content/uploads/2013/05/Parallela.png

https://spellfoundry.com/wp/wp-content/uploads/2013/05/Parallela.png

Hardware with non-shared memory

An non-exhaustive list:

● 80’s: Inmos Transputer (programmed in occam, ?? cores)
● 90’s, Intel: Paragon (2048 cores “in a 2D grid”)
● 2000’s, IBM & Rapport: Kilocore (1024 cores)
● 2010’s, Tilera: TileGx (72 cores)
● 2010’s Adapteva: Epiphany (up to 4096 cores in theory, Parallela board 64 cores)
● 2006-2015, UC Davis: AsAP (36, then 167 cores)
● since 2008, Kalray: MPPA (256 cores)
● since 2012, Green Arrays: GA144 (144 cores) - asynchronous, no clock signal!
● 2018, Sunway: SW26010 (260 cores) (TaihuLight supercomputer #1 in 2018)

The elephant in the room

Processes interacting by sending messages over a network… 🤔

The elephant in the room

Processes interacting by sending messages over a network…

 The internet!

Distributed systems. “The cloud.”
A software designed using isolated process & MP can scale.

🤔

The elephant in the room

Processes interacting by sending messages over a network…

 The internet!

Distributed systems. “The cloud.”
A software designed using isolated process & MP can scale.

High performance computing (HPC): Open MPI (Message Passing Interface)

🤔

Bonus:
OS-level message passing

OS: isolate processes, but let them communicate

Unix:

● Processes do not share memory (in general)
● man 7 pipe: “Pipes provide a unidirectional interprocess comm channel.”

○ semantics: asynchronous, ordered, reliable, unidirectional

pipe() // create a pipe, returns 2 file descriptors to write & read

write(fd1, …) // send
read(fd2, …) // recv
select(<set of FDs>) // recv from one of the file descriptors (see also poll/epoll)

fork() // create a new process
SIGCHLD // signal received by parent with child process crashes

Who designs software using OS-level processes?

https://blog.mozilla.org/security/2021/05/18/introducing-site-isolation-in-firefox/

Isolating each site into a separate operating system process
makes it even harder for malicious sites to read another site’s
secret or private data.

https://blog.mozilla.org/security/2021/05/18/introducing-site-isolation-in-firefox/

Who designs software using OS-level processes?

● Mozilla
● …
● Prof. D J Bernstein: qmail (email), djbdns (DNS)

○ Used by millions
○ Final versions released ~20 years ago
○ Handful of non-security holes found
○ 20+ years ongoing bug bounty to find a security hole

Who designs software using OS-level processes?

● Mozilla
● …
● Prof. D J Bernstein (“djb”): qmail (email), djbdns (DNS)

○ Used by millions
○ Final versions released 20+ years ago
○ Handful of non-security holes found
○ 20+ years ongoing bug bounty to find a security hole

Conclusion

Conclusion

● Message passing semantics
● Use MP concurrency for software design
● Use isolated processes for software reliability
● Not mainstream (yet?), but used in the industry
● Scalability of isolated processes + message passing design

● Not a silver bullet!
● Try it yourself :)

Further reading / watching

● Videos
○ Joe Armstrong: How we program multicores https://youtu.be/bo5WL5IQAd0
○ Rob Pike: Concurrency/message passing Newsqueak https://youtu.be/hB05UFqOtFA
○ (Both are good speakers, check out their other talks!)

● Russ Cox: ”Bell Labs and CSP Threads” https://swtch.com/~rsc/thread/
● Joe Armstrong’s PhD thesis (2003): http://erlang.org/download/armstrong_thesis_2003.pdf
● Fred Hébert (Heroku): https://learnyousomeerlang.com/ https://www.erlang-in-anger.com/
● Actor model as a library in Java: Akka https://akka.io

● Formal reasoning on concurrent programs using CSP, CCS, process calculus, etc…
● Multiway rendezvous: synchronous message passing between N processes

○ Garavel, Serwe: The Unheralded Value of the Multiway Rendezvous hal.archives-ouvertes.fr/hal-01511847

● More generally: “Coders at Work” by Peter Seibel, interviews of famous programmers

https://youtu.be/bo5WL5IQAd0
https://youtu.be/hB05UFqOtFA
https://swtch.com/~rsc/thread/
http://erlang.org/download/armstrong_thesis_2003.pdf
https://learnyousomeerlang.com/
https://www.erlang-in-anger.com/
https://akka.io
https://hal.archives-ouvertes.fr/hal-01511847

Thanks!

Questions?

