
CSE113: Parallel Programming
April 8, 2021

• Topic: instruction-level parallelism (ILP)
• dependency graphs/chains
• loop unrolling
• reductions

• and
• Programming C++ threads

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Announcements

• Last disruption for the quarter!

• Videos can now be downloaded
• Do not distribute!

• Homework will be posted by Thursday midnight
• It is mostly about ILP, so pay attention!

• My office hours are on Friday, 3 - 5 PM

Instruction-level Parallelism (ILP)

• Parallelism from a single stream of instructions.
• Output of program must match exactly a sequential execution!

• Widely applicable:
• most mainstream programming languages are sequential
• most deployed hardware has components to execute ILP

• Done by a combination of programmer, compiler, and hardware

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

two instructions can be executed in
parallel if they are independent

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

Instruction-level Parallelism (ILP)

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Many times, dependencies can be
easily tracked in the compiler:

Two instructions are independent if the
operand registers are disjoint from the result
registers

(assume all letter variables are registers)

How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

A compiler will turn this into an
abstract syntax tree (AST)

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Simplify this code:

post-order traversal, using temporary
variables

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

Now we build a “data dependency graph” (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

instr1;instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2; instr1;instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

6 cycles for 3 independent
instructions

Converges to 1 instruction per cycle

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

What if the
instructions depend on
each other?

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr2;
instr3;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr3;

instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

instr3;

instr2;

and so on...

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

What if the
instructions depend on
each other?

9 cycles for 3 instructions

converges to 3 cycles per
instruction

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;

instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;instr2;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

instrX0;instrX1;instr2;

and so on...

We converge to 1 cycle per instruction
again!

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

Say instr2; and instr3;
have a control
dependence on instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

Say instr2; and instr3;
have a control
dependence on instr1;

instr1;

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

Say instr2; and instr3;
have a control
dependence on instr1;

instr1;instr2;

speculative

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

Say instr2; and instr3;
have a control
dependence on instr1;

instr1;instr2;

speculative

instr3;

speculative

Pipeline

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

Say instr2; and instr3;
have a control
dependence on instr1;

instr2;

speculative

instr3;

speculative

before we commit
the speculative instructions,
we check if the control
dependence was satisfied.

How can hardware execute ILP?

• Executing multiple instructions at once:

• Very Long Instruction Word (VLIW) architecture
• Multiple instructions are combined into one by the compiler

• Superscalar architecture:
• Several sequential operations are issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel

It’s even more complicated

• Out-of-order execution delays dependent instructions
• Reorder buffers (RoB) track dependencies
• Load-Store Queues (LSQ) hold outstanding memory requests

What does this look like in the real world?

• Intel Haswell (2013):
• Issue width of 4
• 14-19 stage pipeline
• OoO execution

• Intel Nehalem (2008)
• 20-24 stage pipeline
• Issue width of 2-4
• OoO execution

• ARM
• V7 has 3 stage pipeline; Cortex V8 has 13
• Cortex V8 has issue width of 2
• OoO execution

• RISC-V
• Ariane and Rocket are In-Order
• 3-6 stage pipelines
• some super scaler

implementations
(BOOM)

What does this mean for us?

• We should have an abstract and parametrized performance model for
instruction scheduling (the order of instructions)

• Try not to place dependent instructions in sequence

• Many times the compiler will help us here, but sometimes it cannot!

Three techniques to optimize for ILP

• Priority topological ordering

• Independent for loops

• Reduction for loops

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

First, consider optimizing
for superscalar

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Label nodes with the maximum
distance to a source

0

0

0

0

1

2

3

4

5

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Break ties in topological
order using this number

Label nodes with the maximum
distance to a source

0

0

0

0

1

2

3

4

5

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Break ties in topological
order using this number

0

0

0

0

1

2

3

4

5

Label nodes with the maximum
distance to a source

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r7 = 2 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move independent
instructions as high
as possible. What about
pipelining?

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r0 = neg(b);
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r0 = neg(b);
r5 = sqrt(r4);
r7 = 2 * a;
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

final

In practice

• A compiler will optimize for your architecture using a performance
model

• Some approaches use a resource model that explicitly encode the
issue-width and pipeline

Use-case

• Loop unrolling

• Reduction loops

Using Loop Unrolling to Exploit ILP

• for loops with independent chains of computation

for (int i = 0; i < SIZE; i++) {
SEQ(i);

}

where: SEQ(i) = instr1;
instr2;
...
a[i] = instrN;

and let instr(N) depends on instr(N-1)

loops only write to memory
addressed by the loop variable

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}

Saves one addition and one comparison per loop, but doesn’t help with ILP

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);
...
SEQ(i,N);
SEQ(i+1, N);

}

Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,1);
...
SEQ(i,N);
SEQ(i+1, N);

}

Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

two instructions can be pipelined, or executed
on a superscalar processor

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,1);
...
SEQ(i,N);
SEQ(i+1, N);

}

two instructions can be pipelined, or executed
on a superscalar processor

Loop Unrolling for Reduction Loops

• Prior approach examined loops with independent iterations and
chains of dependent computations

• Now we will look at reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: 21

max: 6

min: 1

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
a[0] = REDUCE(a[0], a[i]);

}

If the reduction operator is associative, we can do better!

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

36 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

independent
instructions
can be done
in parallel!

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

consider instr1 and instr2 have a data dependence, and instrX’s are independent

instr1;
instrX0;
instrX1;
...
instr2;

independent instructions. If they overwrite the register storing instr1’s result, then it will have to
be stored to memory and retrieved before instr2

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

Solutions include using a resource model to guide the topological ordering. Highly
architecture dependent. Algorithms become more expensive

Typically doesn’t show up in basic block analysis. In loop unrolling, it will influence the
number of unrolls you do.

Priority Topological Ordering
of DDGs

r7 = 2 * a;
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Discussion

• Where is parallelism most commonly found?
• Non-numeric applications are thought to have very little. lots of:

• I/O (file, network, user),
• events,
• source needed

• numeric applications have more:
• media processing (image, video, sound)
• machine-learning (esp. inference)

• More and more, numeric applications are moving to accelerators

Modern SoC

• From David Brooks lab at
Harvard:

http://vlsiarch.eecs.harvard.
edu/research/accelerators/di
e-photo-analysis/

• Compilers will need to be
able to map software
efficiently to a range of
different accelerators

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

Current tensions

• Simple cores with accelerators/GPUs?
• Less need for pipelines, OoO, and superscalar
• Hard to port legacy code

• Complicated cores
• area/power hungry
• great for legacy code

Academic prototype chip that I worked
on at Princeton!

C++ Threads

• Introduction
• Learn as needed throughout class

• Multi-threading officially introduced in C++11
• only widely available after ~2014
• official specification
• cross-platform

• Before C++ threads
• pthreads

C++ Threads

• Introduction
• Learn as needed throughout class

• Multi-threading officially introduced in C++11
• only widely available after ~2014
• official specification
• cross-platform

• Before C++ threads
• pthreads
• volatile

C++ Threads

• Main idea:
• run functions concurrently

main

launch foo(a,b,c)

C++ Threads

• Main idea:
• run functions concurrently

main

foo(a,b,c)

main needs to wait for foo.
join()

launch foo(a,b,c)

waiting

foo finishes

C++ Threads

• Main idea:
• run functions concurrently

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

header and namespace

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

Launches a concurrent
thread that executes foo

Stores a handle in thread_handle
(don’t lose the handle!)

constructor takes in the function, and
all arguments

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

Requires C++14

clang++ -std=c++14 main.cpp

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

calling join() on the thread handle
will cause main to wait for the
thread launched with thread_handle
to finish.

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

main

foo(a,b,c)

main waits for foo.
called join()

launch foo(a,b,c)

waiting

foo finishes

main

join() returns in main

After foo finishes,
main starts executing again

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

What happens if you don’t
join your threads?

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

JOIN YOUR THREADS!!!

What happens if you don’t
join your threads?

#include <thread>
using namespace std;

void foo(int a, int b, int c) {
// some foo code

}

int main() {
// some main code
thread thread_handle (foo,1,2,3);
// code here runs concurrently with foo
thread_handle.join();
return 0;

}

return value?

Doesn’t have to be void,
but it is ignored

how to get values back
from threads?

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int &c) {
// return a + b;
c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, ref(ret));
// code here runs concurrently with foo
thread_handle.join();
cout << ret << endl;
return 0;

}

Options

pass by reference (C++)

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
// return a + b;
*c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, &ret);
// code here runs concurrently with foo
thread_handle.join();
cout << ret << endl;
return 0;

}

Options

pass by address (C++ or C)

#include <thread>
#include <iostream>
using namespace std;

int c;
void foo(int a, int b) {
// return a + b;
c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2);
// code here runs concurrently with foo
thread_handle.join();
cout << c << endl;
return 0;

}

Options

global variable
(don’t do this!)

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
// return a + b;
*c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, &ret);
// code here runs concurrently with foo
cout << ret << endl;
thread_handle.join();
return 0;

}

What if....

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
// return a + b;
*c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, &ret);
// code here runs concurrently with foo
cout << ret << endl;
thread_handle.join();
return 0;

}

What if....

Undefined behavior!
Cannot access the same
values concurrently
without protection!

Next module we will talk
protection (locks)

#include <thread>
#include <iostream>
using namespace std;

void foo(int a, int b, int *c) {
// return a + b;
*c = a + b;

}

int main() {
// some main code
int ret = 0;
thread thread_handle (foo,1,2, &ret);
// code here runs concurrently with foo
cout << ret << endl;
thread_handle.join();
return 0;

}

What if....

Undefined behavior!
Cannot access the same
values concurrently
without protection!

Next module we will talk
protection (locks)

SPMD programming model

• Same program, multiple data

• Main idea: many threads execute the same function, but they operate
on different data.

• How do they get different data?
• each thread can access their own thread id, a contiguous integer starting at 0

up to the number of threads

SPMD programming model

lets do this in parallel!
each thread increments different
elements in the array

void increment_array(int *a, int a_size) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

The function gets a thread id and the
number of threads

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = 0; i < a_size; i++) {

a[i]++;
}

}

A few options on how to split up the work
lets do round robin

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

iteration 1 computes index 0

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

iteration 2 computes index 2

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 0
i.e.
tid = 0
num_threads = 2

iteration 3 computes index 4

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iteration 1 computes index 1

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iteration 2 computes index 3

SPMD programming model

void increment_array(int *a, int a_size, int tid, int num_threads) {
for (int i = tid; i < a_size; i+=num_threads) {

a[i]++;
}

}

array a

Assume 2 threads
lets step through thread 1
i.e.
tid = 1
num_threads = 2

switch to thread 1
iteration 3 computes index 5

SPMD programming model
void increment_array(int *a, int a_size, int tid, int num_threads);

#define THREADS 8
#define A_SIZE 1024
int main() {
int *a = new int[A_SIZE];
// initialize a
thread thread_ar[THREADS];
for (int i = 0; i < THREADS; i++) {
thread_ar[i] = thread(increment_array, a, A_SIZE, i, THREADS);

}
for (int i = 0; i < THREADS; i++) {
thread_ar[i].join();

}
delete[] a;
return 0;

}

See you all on Tuesday!

• Finished up Module 1
• Hardware and compiler overview

• Next module begins on Tuesday
• Mutual Exclusion

• Homework posted by tomorrow midnight

• Office hours on Friday

