CSE113: Parallel Programming

April 29, 2021

* Topic: Concurrent Objects 2
* More SC examples!
* Linearizability
* A concurrent set

Announcements

* Midterm will be released today by midnight (probably earlier)
* No discussions, only private clarifying questions to teach staff.
* We will keep a running discussion on Canvas for clarifying questions
* Give yourself time to do both homework 2 and midterm

* We are working on grades for HW1, hopefully by next week.

Announcements

Homework
* We can start sharing results next week (throughput, variance)

* |s variance a good metric for part 1? Maybe not the best. Have a look at @76
» coefficient of variation
* changing results to percentages

 What does fairness mean in #27?
* You can do it with sleeps, yields
* You can also do it logically.
* Try both! (next year | will require both ©)

 Part 3:

* You do not need to “upgrade” the lock from reader to writer atomically! You do need to perform the
swap atomically though.

Announcements

* Guest lecture on May 20!
* Hugues Evrard (Google) will talk about message passing concurrency

 Alastair Donaldson (Imperial College London) will talk about testing GPU
compilers

Quiz

* Thank you! Quiz numbers almost exactly matched attendance last
time

Quiz
i DiSCUSS answers

e Question using non-thread safe objects: Java has finally blocks, C++
has destructors

void foo() { void foo() {
m.lock(); lock guard<mutex> lock(m);
X = vector.at(120); X = vector.at(120);

m.unlock(); }

Lecture schedule

* Revisiting sequential consistency
* Linearizablity
* Progress Properties

* Implementing a set

Lecture schedule

* Revisiting sequential consistency
* Linearizablity
* Progress Properties

* Implementing a set

More SC examples!!

To make up for my mistake last lecture

Global variable:
CQueue<int> q;

Thread O: Thread 1:
g.enqg(6); int t0 = g.dec();
g.enqg(7); int tl = g.dec();

Is it possible for tO to contain
7 and t1 to contain 67

Global variable:
CQueue<int> q;

Thread O: Thread 1:
g.enqg(6); int t0 = g.dec();
g.enqg(7); int tl = g.dec();

g.enq(6); s it possible for t0 to contain
Rk , 7 and t1 to contain 67

g.enq(7);

int t0 = g.dec();

int t1 = g.dec();

Global variable:
CQueue<int> q;

Thread O: Thread 1:
g.enqg(6); int t0 = g.dec();
g.enq(7); int tl = g.dec();
needs to go here because of
progy
e BN - q.enq(7); ls it possible for t0 to contain
q-enq(6); | 7 and t1 to contain 6?

int t0 = g.dec();
needs to go here |
because of t1

int tl1 = g.dec();

i

Global variable:

CStack<int> s; FILO object

Thread O: Thread 1:

SolPBEln () f int t0 = s.pop();
s.push(7); int tl = s.pop();

Is it possible for tO to contain
7 and t1 to contain 67

Global variable:

CStack<int> s; FILO object

Thread O: Thread 1:

SolPBEln () f int t0 = s.pop();
s.push(7); int tl = s.pop();

Is it possible for tO to contain

s.push(6); .
push(06) 7 and t1 to contain 6?

s.push(7);

int t0 = s.pop();

int tl1 = s.pop();

Global variable:

CStack<int> s; FILO object

Thread O: Thread 1:

SolPBEln () f int t0 = s.pop();
s.push(7); int tl = s.pop();

s.push(6);
s.pusL(7);
int t0 =|S-p0p();
int tl =|S-p0p();

Is it possible for tO to contain
7 and t1 to contain 67

Global variable:

CStack<int> s; FILO object

Thread O: Thread 1:

SolPBEln () f int t0 = s.pop();
s.push(7); int tl = s.pop();

s.push(6);
s.pusL(7);
int t0 =|S-p0p();
int tl =|S-p0p();

Is it possible for tO to contain
7 and t1 to contain 07

Global variable:

CStack<int> s; FILO object

Thread O: Thread 1:

SolPBEln () f int t0 = s.pop();
s.push(7); int tl = s.pop();

needs to go here because of
prOgV
s.push(6); s.push(7); Is it possible for tO to contain

| 7 and t1 to contain 0?

int t0 = s.pop();
|

because of t1
hxg tl = s.pop();

R

needs to go here

Global variable:
CQueue<int> q,p;

Multiple objects

Thread O: Thread 1:
p.enq(l); g.enq(l);
int t0 = g.dec(); int tl1 = p.dec();

Is it possible for t0 and t1 to contain O at the end of this program?

Global variable:
CQueue<int> q,p;

Multiple objects

Thread O: Thread 1:

p.enq(l); g.enq(l);

int t0 = g.dec(); int tl1 = p.dec();
p.eng(1l); a-enall);

int tl = p.dec();

int t0 = g.dec();

Is it possible for t0 and t1 to contain O at the end of this program?

Global variable:
CQueue<int> q,p;

Multiple objects

Thread O: Thread 1:
p.enq(l); g.enq(l);
int t0 = g.dec(); int tl1 = p.dec();

needs to go here because of
progV
int t0 = g.dec();

p.eng(l); |

g.enqg(l);
|

t tl = p.dec();

\\\i

Is it possible for t0 and t1 to contain O at the end of this program?

needs to go here
because of t1

Global variable:
CQueue<int> q,p;

Multiple objects

Thread O: Thread 1:
int t0 = g.dec(); int tl1 = p.dec();
p.enq(l); g.enq(l);

Is it possible for t0 and t1 to both contain 1 at the end of this program?

Global variable:
CQueue<int> q,p;

Multiple objects

Thread O: Thread 1:
int t0 = g.dec(); int tl = p.dec();
p.enq(1l); g.enq(l);
g.enq(l);
p.eng(l);
int t0 = g.dec(); int tl = p.dec();

Is it possible for t0 and t1 to both contain 1 at the end of this program?

Global variable:
CQueue<int> q,p;

Multiple objects

Thread O: Thread 1:
int t0 = g.dec(); int tl1 = p.dec();
p.enq(l); g.enq(l);

int tl = p.dec();

needs to go here
because of t1

g.enqg(l);

.eng(l); |
p.enqg(l) int t0 = g.dec();

needs to go here
because of program
order

Is it possible for t0 and t1 to both contain 1 at the end of this program?

Remember the issue with sequential const.

Sequential consistency and real time

e Add in real time:

This timeline seems
strange...

| g.enq(6) I
Thread O | I

‘ g.enq(7) \ ‘ .d ==6 \
Thread 1 3-deql)

real time line

Sequential consistency and real time

° Add i | ti . This execution is allowed in
In real time: sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual

| g.enqg(6) I sequential timeline

Thread O | I

»
»

v

g.enq(7) 4 __
Thread 1 Igl ‘ qg.deq() \

real time line

Sequential consistency and real time

° Add i | ti . This execution is allowed in
In real time: sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual

| g.enqg(6) I sequential timeline

Thread O | I

end 1 i dg.enq(7) I iq.deq()== I

real time line

Sequential consistency and real time

e Add in real time:

g.enq(6)
Thread 0

g.enq(7);
Thread 1

real time line

g.deq()==

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual

sequential timeline

Sequential consistency and real time

Why might this actually happen?
* Add in real time:

| 9-enq(6) |

Thread O | I

‘ g.enq(7) \ ‘ .d ==6 \
Thread 1 3-deql)

Sequential consistency and real time

Why might this actually happen?

° 1 : .
Add In real time: asynchronous calls (like printf), e.g. it buffers the value before publishing it?

Lazy publishing (e.g. cache values in registers)?

| g.enq(6) I
Thread O | I

v

v

g.enq(7) .d —
Thread 1 Igl I—Iq eal)

Sequential consistency and real time

Why might this actually happen?

° 1 : .
Add In real time: asynchronous calls (like printf), e.g. it buffers the value before publishing it?

Lazy publishing (e.g. cache values in registers)?

| g.enq(6) I
Thread O | I

v

v

g.enq(7) .d —
Thread 1 Igl I—Iq eal)

Sequential consistency and real time

e Add in real time:

g.enq(6)
Thread 0

g.enq(7);
Thread 1

real time line

g.deq()==

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual

sequential timeline

|
g.enqg(6);
|
g.enq(7);
|

g.deq() == 6

Sequential consistency and real time

e Add in real time: 2 objects now: p and q
| p.enq(ll)l | g.enq(2) I | p.deq()==12|
Thread O | I | I | I

Thread 1

| 9-enqa(l) | | P-eng(12) | | 9-deq()==2 |

Sequential consistency and real time

e Add in real time: 2 objects now: p and q
Consider each object in isolation

end O | p.enq(ll)l | g.enq(2) I | p.deq()==12|
rea
| | | | | |

Thread 1 Iq.enq(l) I |p.enq(12)| Iq.deq()== I

v

v

Sequential consistency and real time

e Add in real time: 2 objects now: p and q
Consider each object in isolation

end O | p.enq(ll)l | g.enq(2) I | p.deq()==12|
rea
| | | | | |

Thread 1 Iq.enq(l) I |p.enq(12)| Iq.deq()== I

v

v

Sequential consistency and real time

e Add in real time: 2 objects now: p and q
Consider each object in isolation

thread 0 p.enqg(11)] | 9-ena(2) | | p-deq()==12 p.eng(12)
rea .,
| | | | | |
p.eng(1ll)
p.deq() ==

| 9-enq(l) | | P-enqg(12) | | 9-deq()== |

I I | I v

Thread 1

v

Sequential consistency and real time

e Add in real time: 2 objects now: p and q
Consider each object in isolation

end O | p.enq(ll)l | g.enq(2) I | p.deq()==12|
rea
| | | | | |

Thread 1 Iq.enq(l) I |p.enq(12)| Iq.deq()== I

v

v

Sequential consistency and real time

e Add in real time: 2 objects now: p and q
Consider each object in isolation

o | B-enaiD)] | 9-ena(2) | | p-deq()==12 | g.enq(2)
rea .
| | | | | |
g.enq(1l)
g.deq() ==

Thread 1 Iq.enq(l) I |p.enq(12)| Iq.deq()== I

I I | I v

v

Sequential consistency and real time

e Add in real time: Now consider them all together
| p.enq(ll)l | g.enq(2) I | p.deq()==12|
Thread O | I | I | I >
Thread 1 | g.enq(1l) I !p.enq(lz)! | g.deqg()==2 I

Global variable:
CQueue<int> p,q;

Thread O: Thread 1:
p.enq(1l1) g.enq(1l)
g.enq(2) p.enq(1l2)
p.deq()==12 g.deq()==

Global variable:
CQueue<int> p,q;

Thread O: Thread 1:
p.enq(1l1) g.enq(1l)
g.enq(2) p.enq(1l2)
p.deq()==12 g.deq()==

p.deq()== 12;

Global variable:
CQueue<int> p,q;

Thread O: Thread 1:
p.enqg(1l1) p.enq(12); g.eng(1l)

: 2 | :
g.end(1_ Ep—EETY p.enqg(1l2)
p.deq()==12 g.deq()==

p.deq()== 12;

Global variable:
CQueue<int> p,q;

Thread O: Thread 1:
p.enqg(1l1) p.enq(12); g.eng(1l)
: 2 | :
g.end(1_ Ep—EETY p.enqg(1l2)
p.deq()==12 g.deq()==
p.deq()== 12;

g.deq()== 2;

Global variable:
CQueue<int> p,q;

Thread O: Thread 1:
p.enqg(1l1) p.enq(12); g.eng(1l)
: 2 | :
g.end(1_ Ep—EETY p.enqg(1l2)
p.deq()==12 | g.deq()==
g.enq(2)
p.deq()== 12;

g.deq()== 2;

Global variable:

CQueue<int> p,q; g.enq(1l);
Thread O: where to put this? | Thread 1:
p.enqg(1l1) p.enq(12); g.eng(1l)
g.enq(2) T p.enqg(1l2)
.en .
p.deq()==12 p-= | qg.deq()==
g.enq(2)
p.deq()== 12;

g.deq()== 2;

Global variable:

CQueue<int> p,q; g.enq(1l);
before p.enq(12)
Thread O: where to put this? | Thread 1:
p.enq(1ll) p.enq(12); g.enq(1l)
g.enq(2) | p.enq(1l2)
p.deg()==12 p'enq(l‘l); g.deq()==
g.enq(2)

after g.enqg(2)

p.deq()== 12;

g.deq()== 2;

What does this mean?

* Even if objects in isolation are sequentially consistent
* Programs composed of multiple objects might not be!

* We would like to be able to use more than 1 object in our programs!

Lecture schedule

* Revisiting sequential consistency
* Linearizablity
* Progress Properties

* Implementing a set

Linearizability

* Linearizability
* Defined in term of real-time histories
* We want to ask if an execution is allowed under linearizability

e Slightly different game:
* sequential consistency is a game about stacking lego bricks
* linearizability is about sliders

Linearizability

each operation has a linearizability point
- does not overlap with other with other linearizability points
- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

Linearizability

each operation has a linearizability point
- does not overlap with other with other linearizability points
- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

Linearizability

each operation has a linearizability point
- does not overlap with other with other linearizability points
- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

empty queue enqg(1l) queue contains 1

object state: M object state: M’

Linearizability

each operation has a linearizability point
- does not overlap with other with other linearizability points
- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

queue contains [1,2] deqg () queue contains [1], deq returns 2.

object state: M object state: M’

Linearizability

each operation has a linearizability point
- does not overlap with other with other linearizability points
- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

queue contains [1,2] peek () return value from M, i.e. 2

object state: M object state: M’

|_| n ea rl Za bl ‘ |ty each command gets a linearization

point.

You can place the point any where
between its innovation and response!

| 9-enq(6) |
Thread O |

—
v

v

Threadl Igl q eq()

|_| n ea rl Za bl ‘ |ty each command gets a linearization

point.

You can place the point any where
between its innovation and response!

g.enq(6) |
Thread O i"

—
v

v

q‘enq(7) ‘d ==
Thread 1 Igl ‘ g.deq() \

. . el each command gets a linearization
Linearizability point

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

Thread O

3@
)
o]
Q
(o))
v

v

reason
g.enqg(7) _de __ sequentially!
Thread 1 d a0)
|
|
|

|
|
|
|
|
|
|
|
|
|
| |
| |
| |
global timeline * ‘ ‘

v

. . el each command gets a linearization
Linearizability point

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

Thread 0

3@
)
o]
Q
(o))
v

This outcome is invalid!

v

reason
g.enqg(7) _de __ sequentially!
Thread 1 d a0)
|
|
|

|
|
|
|
|
|
|
|
|
|
| |
| |
| |
global timeline * ‘ ‘

v

. . . each command gets a linearization
Linearizability point.
You can place the point any where

between its innovation and response!

Project the linearization points to a

id | global timeline
slider game!

v

Thread O I

try to slide the linearization
point within its range
to justify the outcome
reason

g.enqg(7) _de __ sequentially!
Thread 1 |E+ g a()

|
|
|
|
|
|
|
I
|
' | I
| I |
| I |
global timeline ‘ ‘ ‘

This outcome is invalid!

v

v

Linearizability

| 9-enq(6) |

Thread O | I

‘ g.enq(7) \ ‘ .d ==6 \
Thread 1 3-dead)

Linearizability

g.enq(6) |

Thread O I

g.enq(7)
Thread 1

v

‘ g.deq()== \

v

Linearizability

Thread 0

.
5
)
=
Q
o
v

This is allowed now!

‘ q-enq(7)" ‘ .deq()== \
Thread 1 I 3-deqat)

v

v

Linearizability

| q.push(6)|

Thread O | I

q‘puSh(7) «. DO ==6
Thread 1 Igl I—Iq pop ()

Linearizability

| q.push(6)|

Thread O

—
—
v

allowed!
Guaranteed?

v

g.push(7) . ==
Thread 1 Ig‘l I_.—Iq popl)

Linearizability

q.push(6)|

Thread 0 i ® I >

guaranteed?

g.push(7) . DO ==
Thread 1 Ig‘l d.p p() R

Linearizability

v

| g.push(6)
Thread O |

guaranteed?

Thread 1 ILWq q.pop()==?)

Linearizability

* We spent a bunch of time on SC... did we waste our time?
* Nol!

* Linearizability is strictly stronger than SC. Every linearizable execution is SC,
but not the other way around.

* |f a behavior is disallowed under SC, it is also disallowed under linearizability.

* Overall strategy:
* Write our objects to be linearizable: need to identify linearizable points
e Reason about our programs using SC: no need for timelines, just need code

Linearizability

* How do we write our programs to be linearizable?
* |dentify the linearizability point

* One indivisible region (e.g. an atomic store, atomic load, atomic RMW, or
critical section) where the method call takes effect. Modeled as a point.

empty queue enqg(1l) queue contains 1

object state: M object state: M’

Linearizability

e Locked data structures are linearizable.

bank_accountis 0

buy coffee()

bank _account is -1

v

object state: M

object state: M’

class bank account {
public:
bank account() {
balance = 0;

}

void buy coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

}i

Linearizability

e Locked data structures are linearizable.

typically modeled as the point the lock is acquired or released

bank_accountis 0 buy coffee() bank _account is -1

I » I
I ' I

lock unlock

object state: M object state: M’

v

class bank account {
public:
bank account() {
balance = 0;

}

void buy coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

}i

Linearizability

e Locked data structures are linearizable.

typically modeled as the point the lock is acquired or released
lets say released.

bank_accountis 0 buy coffee() bank _account is -1

v

I » I
I] I

lock unlock

object state: M object state: M’

class bank account {
public:
bank account() {
balance = 0;

}

void buy coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

}i

Linearizability

* Our lock-free bank account is
linearizable:

* The atomic operation is the
linearizable point

bank _accountis 0 buy coffee()

class bank account {
public:
bank account() {
balance = 0;

}

void buy coffee() {
atomic_fetch add(&balance, -1);

}

void get paid() {
atomic_ fetch add(&balance, 1);

}

private:
atomic_int balance;

}i

bank _account is -1

v

I » I
I] I

object state: M atomic_fetch add

object state: M’

Lecture schedule

* Revisiting sequential consistency
* Linearizablity
* Progress Properties

* Implementing a set

Progress properties

* Going back to specifications:

Recall the mutex

Th read 0 mutex request [| mutex acquire mutex release

v

Th read 1 mutex request mutex acquire mutex release

what is stopping this?

Progress properties

* Going back to specifications:

Thread 0

Thread 1

Recall the mutex

mutex request

mutex acquire

Thread 0 is stopping Thread 1 from making progress.

If delays in one thread can cause delays in other
threads, we say that it is blocking

mutex request

mutex release

mutex acquire

v

a

what is stopping this?

mutex release

Progress properties

* Going back to specifications:

Thread 0

Thread 1

Recall the mutex

mutex request

mutex acquire

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

mutex request

mutex release

mutexes have a blocking specification

mutex acquire

v

a

what is stopping this?

mutex release

Progress properties

* Going back to specifications:

Recall the mutex

—_ ey
Thread O | mutexrequest || mutexacquire | x x

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Th read 1 mutex request

v

What now?!

v

Progress properties

* Going back to specifications:

Recall the mutex

—_ ey
Thread O | mutexrequest || mutexacquire | x x

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Th read 1 mutex request

v

What now?!

v

Linearizability

g.push(6)

Two unfinished commands.

v

g.push(7)
Thread 1 %

v

Linearizability

g.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

v

g.push(7)

v

Linearizability

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

g.push(6)

v

g.push(7)
Thread 1

v

Linearizability

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

.push(6)

q —

v

v

g.push(7)

for mutexes, the specification required that the system hang.

Linearizability

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

g.push(6)

—
g.push(7)
Thread 1

for mutexes, the specification required that the system hang.
no such specification here.

v

v

Linearizability

Non-blocking specification:
Every thread is allowed to continue executing
REGARDLESS of the behavior of other threads

g.push(6)

—
g.push(7)
Thread 1

for mutexes, the specification required that the system hang.
no such specification here.

v

v

Linearizability

Non-blocking specification:
Every thread is allowed to continue executing
REGARDLESS of the behavior of other threads

g.push(6) e~
Thread 0 X X This is a specification property, not an implementation
Q property! You can implement your concurrent objects

with locks and have a “blocking implementation”.
g.push(7)
Thread 1

But that is because of implementation choice, not because
of specification requirements.

v

Terminology overview
* Thread-safe object:

* Lock-free object:

* Blocking specification:

* Non-blocking specification:

* (non-)blocking implementation:

Terminology overview

* Sequential consistency:
* Linearizability:

* Linearizability point:

Lecture schedule

* Revisiting sequential consistency
* Linearizablity
* Progress Properties

* Implementing a set

An example
* A sorted list:
Slides change style: | borrowed slides (with permission) from

Roberto Palmieri (Lehigh University). They are based off slides
by the book author

Set Interface

e Unordered collection of items
* No duplicates

Set Interface

e Unordered collection of items
* No duplicates

* Methods
* add (x) put xin set
* remove (x) take x out of set
e contains (x) testsif xin set

List Node

class Node {
public:
Value v;
int key;
Node *next;

The List-Based Set

G B — bl — (5

/[M\)]

Sorted with Sentinel nodes
(min & max possible keys)

Sequential List Based Set

add(b)

([3F—Gal[F—c[3—FT]

remove(b)

(T3—>(a] - b 3=—>(c]

Sequential List Based Set

add(b)
CB—»EBY>EI3—>@D
remove(b)

(T3]~ b 3—>(c]

Coarse-Grained Locking

6
([3—el3F—k[3—dD)

Coarse-Grained Locking

Coarse-Grained Locking

i
(T3>l 3+ I%»@D
MEAN
honk!!]

Simple but inefficient!

Fine-grained Locking

* Requires careful thought

* Split object into pieces
* Each piece has own lock
* Methods that work on disjoint pieces need not exclude each other

Hand-over-Hand locking

([F—Gl3—b[F—{]]

O

Hand-over-Hand locking

6

%—'@3—»@3

O

Hand-over-Hand locking

Hand-over-Hand locking

6 6

Hand-over-Hand locking

@

O

Removing a Node

HE g CIE g O g O g C1N

OO.@

Removing a Node

O

Removing a Node

6 6
B (OO g Ok g C18

Oo,

Removing a Node

6 6
el 3l 5 ([3]

O,

Removing a Node

6 O

Removing a Node

6
L rlaly BEagtlB

OO.Q

Removing a Node

6
L rlaly BEagtlB

OO

Why hold 2 locks?

g

Concurrent Removes

HE g CIE g O g O g C1N

5}
O o, '

Concurrent Removes

[[F=>l—~kl5> [0l

5}
O o, '

Concurrent Removes

BB {OE 5o OE g OE gC1l

5}
O o, '

Concurrent Removes

HE g OIE o OE ;o O g C1N

5}
O o, '

Concurrent Removes

Concurrent Removes

Concurrent Removes

Concurrent Removes

Uh, Oh

SEagth]
Oy, .

Uh, Oh

Bad news, ¢ not removed

T
L

Problem

 To delete node ¢
* Swing node b’s next field to d

al bl >[4
* Problem is,

* Data conflict:
* Someone deleting b concurrently could

direct a pointer to C an an a'

Insight

e If a node is locked
e No one can delete node’s successor

* If a thread locks
* Node to be deleted
* And its predecessor
* Then it works

Hand-Over-Hand Again

HE g CIE g O g O g C1N

OO.Q

Hand-Over-Hand Again

Hand-Over-Hand Again

OE g OE g Ok ugCll
SN

O

Hand-Over-Hand Again

Hand-Over-Hand Again

6 6

Hand-Over-Hand Again

SEagth OE gt
LS

Removing a Node

HE g CIE g O g O g C1N

;;
O o, '

Removing a Node

[[F=>l—~bl5> [0l

;;
O o, '

Removing a Node

[[F=>lEl5> [0l

;;
O o, '

Removing a Node

BB {OE 5 OE g OE gCl1l

;;
O o, '

Removing a Node

Removing a Node

Removing a Node

Removing a Node

6 6
HE; (A5 O dOE ogCll

e
OO‘Q .

Removing a Node

acquire
Lock for

Art of Multiprocessor
Programming

Removing a Node

Cannot

acquire

lock for b
OO"Q f;\; a

Removing a Node

6 6

el %@D

Removing a Node

Proceed
to
remove(b)

Removing a Node

O,

Removing a Node

Removing a Node

[[F—(] ‘3 an
LS

Removing a Node

[[5—(l ‘3 an

Adding Nodes

e To add node e
* Must lock predecessor
 Must lock successor

* Neither can be deleted
* |s successor lock actually required?

Drawbacks

* Better than coarse-grained lock
* Threads can traverse in parallel

e Still not ideal

* Long chain of acquire/release
* Inefficient

Linearizability point

* The double node critical section:
* |In parallel, other threads can update other parts of the list (ahead or behind)
* But when we release the double locks, our update is complete

begin: end:
remove (b) remove (b)
object state: M unlocked both nodes
I ©® | :
I traversing the list |

object state: M’
other threads could be updating the list

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock();
while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();
}
pred.next = curr.next;
curr.unlock();

pred.unlock();

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock();
while (curr.value != v) {
pred = curr;
curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock(); remove(b)
pred.unlock(); c)

.,

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock(); 6

while (curr.value != v) {

pred = curr;
curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock(); I"emove(b)
pred.unlock(); O o

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next; |
curr.unlock(); remOVE(b)
pred.unlock(); ()

S

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock(); remove(b)
pred.unlock(); @)

O,

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock(); remove(b)

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock(); remove(b)

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock();
pred.unlock(); w
) Oo,

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock();
pred.unlock(); w
) Oo,

What are we missing?

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();

curr.lock();

while (curr.value != v) {
pred.ulock();
pred = curr;
curr = curr.next();
curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock(); remOVG(b)

void remove(Value v) {
Node* pred = NULL, *curr = NULL;
head.lock();
pred = head;
curr = pred.next();
curr.lock();

while (curr.value != v) {

pred = curr;
curr = curr.next();

curr.lock();

}

pred.next = curr.next;
curr.unlock();

pred.unlock();

Next week

* Reduce the locking even more!
* We will make the list completely lock free!

* Concurrent Queues
* ABA problem
* Specialized Queues

