
CSE113: Parallel Programming
April 29, 2021

• Topic: Concurrent Objects 2
• More SC examples!
• Linearizability
• A concurrent set

Announcements

• Midterm will be released today by midnight (probably earlier)
• No discussions, only private clarifying questions to teach staff.
• We will keep a running discussion on Canvas for clarifying questions
• Give yourself time to do both homework 2 and midterm

• We are working on grades for HW1, hopefully by next week.

Announcements

Homework
• We can start sharing results next week (throughput, variance)
• Is variance a good metric for part 1? Maybe not the best. Have a look at @76

• coefficient of variation
• changing results to percentages

• What does fairness mean in #2?
• You can do it with sleeps, yields
• You can also do it logically.
• Try both! (next year I will require both J)

• Part 3:
• You do not need to ”upgrade” the lock from reader to writer atomically! You do need to perform the

swap atomically though.

Announcements

• Guest lecture on May 20!
• Hugues Evrard (Google) will talk about message passing concurrency
• Alastair Donaldson (Imperial College London) will talk about testing GPU

compilers

Quiz

• Thank you! Quiz numbers almost exactly matched attendance last
time

Quiz

• Discuss answers

• Question using non-thread safe objects: Java has finally blocks, C++
has destructors

void foo() {
m.lock();
x = vector.at(120);
m.unlock();

}

void foo() {
lock_guard<mutex> lock(m);
x = vector.at(120);

}

Lecture schedule

• Revisiting sequential consistency

• Linearizablity

• Progress Properties

• Implementing a set

Lecture schedule

• Revisiting sequential consistency

• Linearizablity

• Progress Properties

• Implementing a set

More SC examples!!

To make up for my mistake last lecture

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.dec();
int t1 = q.dec();

Is it possible for t0 to contain
7 and t1 to contain 6?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.dec();
int t1 = q.dec();

Is it possible for t0 to contain
7 and t1 to contain 6?q.enq(6);

int t0 = q.dec();

q.enq(7);

int t1 = q.dec();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.dec();
int t1 = q.dec();

Is it possible for t0 to contain
7 and t1 to contain 6?q.enq(6);

int t0 = q.dec();

q.enq(7);

int t1 = q.dec();

needs to go here because of
program order

needs to go here
because of t1

Thread 0:
s.push(6);
s.push(7);

Global variable:
CStack<int> s;

Thread 1:
int t0 = s.pop();
int t1 = s.pop();

Is it possible for t0 to contain
7 and t1 to contain 6?

FILO object

Thread 0:
s.push(6);
s.push(7);

Global variable:
CStack<int> s;

Thread 1:
int t0 = s.pop();
int t1 = s.pop();

Is it possible for t0 to contain
7 and t1 to contain 6?

FILO object

s.push(6);

int t0 = s.pop();

s.push(7);

int t1 = s.pop();

Thread 0:
s.push(6);
s.push(7);

Global variable:
CStack<int> s;

Thread 1:
int t0 = s.pop();
int t1 = s.pop();

Is it possible for t0 to contain
7 and t1 to contain 6?

FILO object

s.push(6);

int t0 = s.pop();

s.push(7);

int t1 = s.pop();

Thread 0:
s.push(6);
s.push(7);

Global variable:
CStack<int> s;

Thread 1:
int t0 = s.pop();
int t1 = s.pop();

Is it possible for t0 to contain
7 and t1 to contain 0?

FILO object

s.push(6);

int t0 = s.pop();

s.push(7);

int t1 = s.pop();

Thread 0:
s.push(6);
s.push(7);

Global variable:
CStack<int> s;

Thread 1:
int t0 = s.pop();
int t1 = s.pop();

Is it possible for t0 to contain
7 and t1 to contain 0?

FILO object

s.push(6);

int t0 = s.pop();

s.push(7);

int t1 = s.pop();

needs to go here because of
program order

needs to go here
because of t1

Thread 0:
p.enq(1);
int t0 = q.dec();

Global variable:
CQueue<int> q,p;

Thread 1:
q.enq(1);
int t1 = p.dec();

Is it possible for t0 and t1 to contain 0 at the end of this program?

Multiple objects

Thread 0:
p.enq(1);
int t0 = q.dec();

Global variable:
CQueue<int> q,p;

Thread 1:
q.enq(1);
int t1 = p.dec();

Is it possible for t0 and t1 to contain 0 at the end of this program?

Multiple objects

p.enq(1);
q.enq(1);

int t0 = q.dec();
int t1 = p.dec();

Thread 0:
p.enq(1);
int t0 = q.dec();

Global variable:
CQueue<int> q,p;

Thread 1:
q.enq(1);
int t1 = p.dec();

Is it possible for t0 and t1 to contain 0 at the end of this program?

Multiple objects

p.enq(1);

q.enq(1);

int t0 = q.dec();

int t1 = p.dec();

needs to go here because of
program order

needs to go here
because of t1

Thread 0:
int t0 = q.dec();
p.enq(1);

Global variable:
CQueue<int> q,p;

Thread 1:
int t1 = p.dec();
q.enq(1);

Is it possible for t0 and t1 to both contain 1 at the end of this program?

Multiple objects

Thread 0:
int t0 = q.dec();
p.enq(1);

Global variable:
CQueue<int> q,p;

Thread 1:
int t1 = p.dec();
q.enq(1);

Is it possible for t0 and t1 to both contain 1 at the end of this program?

Multiple objects

p.enq(1);

q.enq(1);

int t0 = q.dec(); int t1 = p.dec();

Thread 0:
int t0 = q.dec();
p.enq(1);

Global variable:
CQueue<int> q,p;

Thread 1:
int t1 = p.dec();
q.enq(1);

Is it possible for t0 and t1 to both contain 1 at the end of this program?

Multiple objects

p.enq(1);
q.enq(1);

int t0 = q.dec();

int t1 = p.dec();needs to go here
because of t1

needs to go here
because of program

order

Remember the issue with sequential const.

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This timeline seems
strange...

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Why might this actually happen?

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Why might this actually happen?

asynchronous calls (like printf), e.g. it buffers the value before publishing it?
Lazy publishing (e.g. cache values in registers)?

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Why might this actually happen?

asynchronous calls (like printf), e.g. it buffers the value before publishing it?
Lazy publishing (e.g. cache values in registers)?

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

q.enq(6);

q.deq() == 6

q.enq(7);

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

p.enq(11)

p.deq() == 12

p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

q.enq(2)

q.deq() == 2

q.enq(1)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

Now consider them all together

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2)

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2)

q.enq(1);

where to put this?

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2)

q.enq(1);

where to put this?
before p.enq(12)

after q.enq(2)

What does this mean?

• Even if objects in isolation are sequentially consistent

• Programs composed of multiple objects might not be!

• We would like to be able to use more than 1 object in our programs!

Lecture schedule

• Revisiting sequential consistency

• Linearizablity

• Progress Properties

• Implementing a set

Linearizability

• Linearizability
• Defined in term of real-time histories
• We want to ask if an execution is allowed under linearizability

• Slightly different game:
• sequential consistency is a game about stacking lego bricks
• linearizability is about sliders

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

empty queue enq(1) queue contains 1

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

queue contains [1,2] deq() queue contains [1], deq returns 2.

Linearizability
each operation has a linearizability point

- does not overlap with other with other linearizability points

- indivisible computation (critical section, atomic RMW, atomic load, atomic store)

- object update (or read) occurs exactly at this point

object state: M object state: M’

queue contains [1,2] peek() return value from M, i.e. 2

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

each command gets a linearization
point.

You can place the point any where
between its innovation and response!

Project the linearization points to a
global timeline

global timeline

reason
sequentially!

This outcome is invalid!

slider game!

try to slide the linearization
point within its range
to justify the outcome

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

Linearizability

Thread 0

Thread 1
q.enq(7)

q.enq(6)

q.deq()==6

This is allowed now!

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

allowed!
Guaranteed?

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==6

guaranteed?

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

q.pop()==?

guaranteed?

Linearizability

• We spent a bunch of time on SC... did we waste our time?
• No!
• Linearizability is strictly stronger than SC. Every linearizable execution is SC,

but not the other way around.

• If a behavior is disallowed under SC, it is also disallowed under linearizability.

• Overall strategy:
• Write our objects to be linearizable: need to identify linearizable points
• Reason about our programs using SC: no need for timelines, just need code

Linearizability

• How do we write our programs to be linearizable?
• Identify the linearizability point
• One indivisible region (e.g. an atomic store, atomic load, atomic RMW, or

critical section) where the method call takes effect. Modeled as a point.

object state: M object state: M’

empty queue enq(1) queue contains 1

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M

bank_account is 0 buy_coffee() bank_account is -1

object state: M’

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released

Linearizability

• Locked data structures are linearizable.

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

lock unlock

typically modeled as the point the lock is acquired or released
lets say released.

Linearizability

• Our lock-free bank account is
linearizable:
• The atomic operation is the

linearizable point

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
atomic_fetch_add(&balance, -1);

}

void get_paid() {
atomic_fetch_add(&balance, 1);

}

private:
atomic_int balance;

};

object state: M object state: M’

bank_account is 0 buy_coffee() bank_account is -1

atomic_fetch_add

Lecture schedule

• Revisiting sequential consistency

• Linearizablity

• Progress Properties

• Implementing a set

Progress properties

• Going back to specifications:

Thread 0

Thread 1

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Progress properties

• Going back to specifications:

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Thread 0

Thread 1

Progress properties

• Going back to specifications:

mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Recall the mutex

what is stopping this?

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Thread 0

Thread 1

mutexes have a blocking specification

Progress properties

• Going back to specifications:

mutex request mutex acquire

mutex request

Recall the mutex

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Thread 0

Thread 1

What now?!

Progress properties

• Going back to specifications:

mutex request mutex acquire

mutex request

Recall the mutex

Thread 0 is stopping Thread 1 from making progress.
If delays in one thread can cause delays in other
threads, we say that it is blocking

Thread 0

Thread 1

What now?!

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

for mutexes, the specification required that the system hang.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Two unfinished commands.

Linearizability does not dictate that one needs to
wait for another

for mutexes, the specification required that the system hang.
no such specification here.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Non-blocking specification:
Every thread is allowed to continue executing
REGARDLESS of the behavior of other threads

for mutexes, the specification required that the system hang.
no such specification here.

Linearizability

Thread 0

Thread 1
q.push(7)

q.push(6)

Non-blocking specification:
Every thread is allowed to continue executing
REGARDLESS of the behavior of other threads

This is a specification property, not an implementation
property! You can implement your concurrent objects
with locks and have a “blocking implementation”.

But that is because of implementation choice, not because
of specification requirements.

Terminology overview

• Thread-safe object:

• Lock-free object:

• Blocking specification:

• Non-blocking specification:

• (non-)blocking implementation:

Terminology overview

• Sequential consistency:

• Linearizability:

• Linearizability point:

Lecture schedule

• Revisiting sequential consistency

• Linearizablity

• Progress Properties

• Implementing a set

An example

• A sorted list:

Slides change style: I borrowed slides (with permission) from
Roberto Palmieri (Lehigh University). They are based off slides
by the book author

Set Interface

• Unordered collection of items
• No duplicates

Set Interface

• Unordered collection of items
• No duplicates
• Methods
• add(x) put x in set
• remove(x) take x out of set
• contains(x) tests if x in set

List Node

class Node {
public:
Value v;
int key;
Node *next;

}

The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

Sequential List Based Set

a c d

a b c

add(b)

remove(b)

Sequential List Based Set

a c d

b

a b c

add(b)

remove(b)

Coarse-Grained Locking

a b d

Coarse-Grained Locking

a b d

c

honk!

Coarse-Grained Locking

a b d

c
honk!

Simple but inefficient!

Fine-grained Locking

• Requires careful thought
• Split object into pieces
• Each piece has own lock
• Methods that work on disjoint pieces need not exclude each other

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Hand-over-Hand locking

a b c

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a c d

remove(b)

Removing a Node

a c d

remove(b)
Why hold 2 locks?

Concurrent Removes

a b c d

remove(c)
remove(b)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Uh, Oh

a c d

remove(b)
remove(c)

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)

Problem

• To delete node c
• Swing node b’s next field to d

• Problem is,
• Data conflict:
• Someone deleting b concurrently could

direct a pointer to c

ba c

ba c

Insight

• If a node is locked
• No one can delete node’s successor

• If a thread locks
• Node to be deleted
• And its predecessor
• Then it works

Hand-Over-Hand Again

a b c d

remove(b)

Hand-Over-Hand Again

a b c d

remove(b)

Hand-Over-Hand Again

a b c d

remove(b)

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

a c d

remove(b)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Art of Multiprocessor
Programming 138

Removing a Node

a b c d

Must
acquire
Lock for

b

remove(c)

Removing a Node

a b c d

Cannot
acquire

lock for b

remove(c)

Removing a Node

a b c d

Wait!
remove(c)

Removing a Node

a b d

Proceed
to

remove(b)

Removing a Node

a b d

remove(b)

Removing a Node

a b d

remove(b)

Removing a Node

a d

remove(b)

Removing a Node

a d

Adding Nodes

• To add node e
• Must lock predecessor
• Must lock successor

• Neither can be deleted
• Is successor lock actually required?

Drawbacks

• Better than coarse-grained lock
• Threads can traverse in parallel

• Still not ideal
• Long chain of acquire/release
• Inefficient

Linearizability point

• The double node critical section:
• In parallel, other threads can update other parts of the list (ahead or behind)
• But when we release the double locks, our update is complete

object state: M

object state: M’

begin:
remove(b)

traversing the list

end:
remove(b)

other threads could be updating the list

unlocked both nodes

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a b c

remove(b)

What are we missing?

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a c

remove(b)

void remove(Value v) {

Node* pred = NULL, *curr = NULL;

head.lock();

pred = head;

curr = pred.next();

curr.lock();

while (curr.value != v) {

pred.ulock();

pred = curr;

curr = curr.next();

curr.lock();

}

pred.next = curr.next;

curr.unlock();

pred.unlock();

}

a c

Next week

• Reduce the locking even more!
• We will make the list completely lock free!
• Concurrent Queues
• ABA problem
• Specialized Queues

