
CSE113: Parallel Programming
April 27, 2021

• Topic: Concurrent Objects
• Motivation
• Bank Account Example
• Specification

• Sequentially consistent
• Linearizability

https://www.youtube.com/watch?v=aByz-mxOXJM

Announcements

• Homework was due
• we are going to start grading, I will keep you posted about ETA for grades

• New homework posted
• Benchmarking questions; don’t share timing until next week
• Bonus questions for those looking for extra

• Office hours are as advertised this week

Announcements

• Midterm assigned on Thursday
• It will provided both as a MS word document and PDF
• Your submission should be a PDF
• My suggestion:

• complete using a combination of a word processor and some problems using
pencil/paper.

• Make sure to give yourself time to juggle both homework and midterm!

Announcements

• Poll, mid class break:
• Do we want a 5 minute break in the middle of class?

Announcements

• Speaking of polls:
• There seems to be some cases where students are only logging in for the

attendance points.

• Please don’t do this.

• It is a small portion of your grade. You get 2 excused absences in the quarter

• If we continue to see inconsistent patterns we will move to a more accurately
attendance mechanism.

Quiz

• If you aren’t planning on staying for the whole lecture, don’t submit
the quiz.

• Don’t submit the quiz if you are not listening to the lecture live.

Quiz

• Discuss answers

Lecture schedule

• Concurrent object motivation

• Concurrent object example with bank account

• Concurrent object specifications
• sequential specification
• concurrent specification - sequential consistency

Lecture schedule

• Concurrent object motivation

• Concurrent object example with bank account

• Concurrent object specifications
• sequential specification
• concurrent specification - sequential consistency

Concurrent object motivation

• Programming basics cover a set of primitives:
• types: ints, floats, bools
• functions: call stacks, recursion

Concurrent object motivation

• Programming basics cover a set of primitives:
• types: ints, floats, bools
• functions: call stacks, recursion

https://www.geeksforgeeks.org/c-program-for-n-th-fibonacci-number/

simple example:
We can understand this!

Concurrent object motivation

• How does it look moving into a more complicated setting?

Concurrent object motivation

• How does it look moving into a more complicated setting?
• Hello world Android app:

https://developer.android.com/codelabs/android-training-hello-world#7

Concurrent object motivation

• How does it look moving into a more complicated setting?
• Hello world Android app:

https://developer.android.com/codelabs/android-training-hello-world#7

what the heck is a bundle?

Concurrent object motivation

• How does it look moving into a more complicated setting?
• Hello world Android app:

https://developer.android.com/codelabs/android-training-hello-world#7

what is this?

Concurrent object motivation

• How does it look moving into a more complicated setting?
• Hello world Android app:

• These are objects!

https://developer.android.com/codelabs/android-training-hello-world#7

Concurrent object motivation

• Objects are user-specified abstractions:
• A collection of data (state) and methods (behavior) representing something more

complicated than primitive types can express.

• Examples:
• Writing a video game? objects for enemies and players
• Writing an IOS app? objects for buttons

• Objects allow programmer productivity:
• Modular
• Encapsulation
• Compossible

• We would like objects in the concurrent setting!

Concurrent object motivation

• Objects are user-specified abstractions:
• A collection of data (state) and methods (behavior) representing something more

complicated than primitive types can express.

• Examples:
• Writing a video game? objects for enemies and players
• Writing an IOS app? objects for buttons

• Objects allow programmer productivity:
• Modular
• Encapsulation
• Compossible

• We would like objects in the concurrent setting!

Concurrent object motivation

• Objects are user-specified abstractions:
• A collection of data (state) and methods (behavior) representing something more

complicated than primitive types can express.

• Examples:
• Writing a video game? objects for enemies and players
• Writing an IOS app? objects for buttons

• Objects allow programmer productivity:
• Modular
• Encapsulation
• Compossible

• We would like objects in the concurrent setting!

Concurrent object motivation

• Objects are user-specified abstractions:
• A collection of data (state) and methods (behavior) representing something more

complicated than primitive types can express.

• Examples:
• Writing a video game? objects for enemies and players
• Writing an IOS app? objects for buttons

• Objects allow programmer productivity:
• Modular
• Encapsulation
• Compossible

• We would like objects in the concurrent setting!

Concurrent object motivation

• Note:
• The foundations in this lecture are general, and can be widely applied to

many different types of objects

• We will focus on ”container” objects, lists, sets, queues, stacks.

• These are:
• Practical - used in many applications
• Well-specified - their sequential behavior is agreed on
• Interesting implementations - great for us to study!

Conceptual examples

• Shopping list: Going shopping with roommates

eggs
carrots
tortillas

Consider two people splitting the work.

Best case:
2x as fast (so we can get back to CSE113
homework)

Conceptual examples

• Shopping list: Going shopping with roommates

eggs
carrots
tortillas

Consider two people splitting the work.

Best case:
2x as fast (so we can get back to CSE113
homework)

What can go wrong?

Conceptual examples

• Shopping list: Going shopping with roommates

eggs
carrots
tortillas

Consider two people splitting the work.

Best case:
2x as fast (so we can get back to CSE113
homework)

What can go wrong?

We end up with duplicates

Conceptual examples

• Shopping list: Going shopping with roommates

eggs
carrots
tortillas

Consider two people splitting the work.

Best case:
2x as fast (so we can get back to CSE113
homework)

What can go wrong?

We end up with duplicates

We end up missing an item

Conceptual examples

• Shopping list: Going shopping with roommates

eggs
carrots
tortillas

Consider two people splitting the work.

Best case:
2x as fast (so we can get back to CSE113
homework)

What can go wrong?

We end up with duplicates

We end up missing an item

If my roommate decides to go surfing, then I
could get stranded!

Conceptual examples

• Shopping list: Going shopping with roommates

Consider two people splitting the work.

Best case:
2x as fast (so we can get back to CSE113
homework)

What can go wrong?

We end up with duplicates

We end up missing an item

If my roommate decides to go surfing, then I
could get stranded!

What kind of
object is the list?

eggs
carrots
tortillas

Conceptual examples
• Physically shopping with roommates is a nice conceptual example,

but the example also occurs in automated systems

Conceptual examples
• Physically shopping with roommates is a nice conceptual example,

but the example also occurs in automated systems

Shared memory concurrent objects

• Lets ground this even more in a shared memory system.

• Shopping cart examples mostly occur in a distributed system setting
where there are many different concerns
• Consider taking a class from Prof. Kuper or Prof. Alvaro!

Shared memory concurrent objects

printf(“hello world\n”);

printf(“h”);
printf(“e”);
printf(“l”);
printf(“l”);
printf(“o”);

how do we envision printf to work?

terminal:
$./a.out

Shared memory concurrent objects

printf(“hello world\n”);

printf(“h”);
printf(“e”);
printf(“l”);
printf(“l”);
printf(“o”);

How does it actually work?

terminal:
$./a.out

./a.out terminal display

concurrent queue

Shared memory concurrent objects

printf(“hello world\n”);

printf(“h”);
printf(“e”);
printf(“l”);
printf(“l”);
printf(“o”);

How does it actually work?

terminal:
$./a.out

./a.out terminal display

concurrent queue

You can force a flush with: fflush(stdout)

Shared memory concurrent objects

printf(“hello world\n”);

printf(“h”);
printf(“e”);
printf(“l”);
printf(“l”);
printf(“o”);

How does it actually work?

terminal:
$./a.out

./a.out terminal display

concurrent queue

You can force a flush with: fflush(stdout)

Show example

Shared memory concurrent objects

• Graphics programming

CPU GPU

Nintendo: breath of the Wild

PCIE

loop:
update data (data transfer)
graphics computation (kernel)

Shared memory concurrent objects

• Graphics programming

CPU GPU

Nintendo: breath of the Wild

loop:
update data (data transfer)
graphics computation (kernel)

data
transfer

kernel
command

PCIE

Vulkan/OpenCL CommandQueue

Shared memory concurrent objects

• Graphics programming

CPU GPU

Nintendo: breath of the Wild

loop:
update data (data transfer)
graphics computation (kernel)

data
transfer

kernel
command

PCIE

Vulkan/OpenCL CommandQueue

GPU driver concurrently
reads from the queue

Shared memory concurrent objects

• Graphics programming

CPU GPU

Nintendo: breath of the Wild

loop:
update data (data transfer)
graphics computation (kernel)

data
transfer

kernel
command

PCIE

Vulkan/OpenCL CommandQueue

GPU driver concurrently
reads from the queue

this concurrent queue enables an efficient
graphics pipeline

Scene 0Computation
for scene 1

Transferring
data for scene 2

Shared memory concurrent objects

• Graphics programming

CPU GPU

Nintendo: breath of the Wild

loop:
update data (data transfer)
graphics computation (kernel)

data
transfer

kernel
command

PCIE

Vulkan/OpenCL CommandQueue

GPU driver concurrently
reads from the queue

Single writer, single reader
Like in Printf

Scene 0Computation
for scene 1

Transferring
data for scene 2

Shared memory concurrent objects

• Graphics programming

GPU

Each process:
loop:

update data (data transfer)
graphics computation (kernel)

data
transfer

kernel
command

data
transfer PCIE

Processes write to the
queue concurrently

Computation
for scene 1

Process 0

Process 1

GPU Driver

kernel
command

Multiple producers

Intro to concurrent objects

• Prior examples have been infrastructural:
• things happening behind the scenes, drivers, OS, etc.

• They also exist in standalone applications

Shared memory concurrent objects

• Quadtree/Octree

https://medium.datadriveninvestor.com/partitioning-2d-spaces-an-introduction-to-quadtrees-d95728856613

Shared memory concurrent objects

• Quadtree/Octree

https://medium.datadriveninvestor.com/partitioning-2d-spaces-an-introduction-to-quadtrees-d95728856613

recursively divide
the scene giving more
detail to “interesting”
areas

Shared memory concurrent objects

• Quadtree/Octree

https://medium.datadriveninvestor.com/partitioning-2d-spaces-an-introduction-to-quadtrees-d95728856613

recursively divide
the scene giving more
detail to “interesting”
areas

Octree example

• From GTC 2012 (almost 10
years ago)
• Simulation of 2 galaxies colliding
• 280K stars

https://www.youtube.com/watch?v=aByz-mxOXJM

Octree example

• From GTC 2012 (almost 10
years ago)
• Simulation of 2 galaxies colliding
• 280K stars

https://www.youtube.com/watch?v=aByz-mxOXJM

Lecture schedule

• Concurrent object motivation

• Concurrent object example with bank account

• Concurrent object specifications
• sequential specification
• concurrent specification - sequential consistency

Lecture schedule

• Concurrent object motivation

• Concurrent object example with bank account

• Concurrent object specifications
• sequential specification
• concurrent specification - sequential consistency

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

global variables:

int tylers_account = 0;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

We might decide to wrap my bank
account in an object

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

int tylers_account = 0;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

We might decide to wrap my bank
account in an object

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

We might decide to wrap my bank
account in an object

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;

what happens if
we run these
concurrently?

Example

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

We might decide to wrap my bank
account in an object

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;

what happens if
we run these
concurrently?

Example

C++ will not
magically make
your objects
concurrent!

The object is not “thread safe”

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

We might decide to wrap my bank
account in an object

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;

First solution:
The client (user
of the object) can
use locks.

The object is not “thread safe”

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
m.lock();
tylers_account.buy_coffee();
m.unlock();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
m.lock();
tylers_account.get_paid();
m.unlock();

}

We might decide to wrap my bank
account in an object

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;
mutex m;

First solution:
The client (user
of the object) can
use locks.

The object is not “thread safe”

what if you have
multiple objects?

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
m.lock();
tylers_account.buy_coffee();
m.unlock();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
m.lock();
tylers_account.get_paid();
m.unlock();

}

We might decide to wrap my bank
account in an object

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
balance -= 1;

}

void get_paid() {
balance += 1;

}

private:
int balance;

};

global variables:

bank_account tylers_account;
mutex m;

First solution:
The client (user
of the object) can
use locks.

client has to
manage locks

The object is not “thread safe”

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

global variables:

bank_account tylers_account;

we can encapsulate
a mutex in the
object.

The API stays
the same!

Thread safe objects

• An object is thread-safe if you can call it concurrently

• Otherwise you must provide your own locks!

Lock free programming

• An object is “lock free” if it does not use a lock in its underlying
implementation.

• We can make a lock free bank account

atomic_fetch_add(atomic_int * addr, int value) {
int tmp = *addr; // read
tmp += value; // modify
*addr = tmp; // write

}

Buying coffee

atomic_fetch_add(&account, -1);

Getting paid

atomic_fetch_add(&account, 1);

Recall atomic RMWs cannot interleave

time
time

time
time

atomic_fetch_add(&account, -1);

atomic_fetch_add(&account, 1);

Buying coffee

atomic_fetch_add(&account, -1);

Getting paid

atomic_fetch_add(&account, 1);

Recall atomic RMWs cannot interleave

time
time

atomic_fetch_add(&account, -1);

atomic_fetch_add(&account, 1);

Buying coffee

atomic_fetch_add(&account, -1);

Getting paid

atomic_fetch_add(&account, 1);

Recall atomic RMWs cannot interleave

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
int balance;
mutex m;

};

global variables:

bank_account tylers_account;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
m.lock();
balance -= 1;
m.unlock();

}

void get_paid() {
m.lock();
balance += 1;
m.unlock();

}

private:
atomic_int balance;
mutex m;

};

global variables:

bank_account tylers_account;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {

balance -= 1;

}

void get_paid() {

balance += 1;

}

private:
atomic_int balance;

};

global variables:

bank_account tylers_account;

Bank account example

Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account.buy_coffee();

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account.get_paid();

}

class bank_account {
public:
bank_account() {
balance = 0;

}

void buy_coffee() {
atomic_fetch_add(&account, -1);

}

void get_paid() {
atomic_fetch_add(&account, 1);

}

private:
atomic_int balance;

};

global variables:

bank_account tylers_account;

How does it perform

How does it perform

• Noticeably better!
• Mutexes reduce parallelism
• Mutexes require many RMW operations

• Straight forward to do with the bank account, we will apply this to
more objects
• This performance matters in frameworks!

3 dimensions for concurrent objects

• Correctness:
• How should concurrent objects behave

• Progress:
• What do we expect from the OS scheduler?
• Under what conditions can concurrent objects deadlock

• Performance:
• How to make things fast fast fast!

Lecture schedule

• Concurrent object motivation

• Concurrent object example with bank account

• Concurrent object specifications
• sequential specification
• concurrent specification - sequential consistency

Lecture schedule

• Concurrent object motivation

• Concurrent object example with bank account

• Concurrent object specifications
• sequential specification
• concurrent specification - sequential consistency

Lets think about a Queue

What is a queue?

We consider 2 API functions:
• enq(value v) - enqueues the value v
• deq() - returns the value at the front of the queue

Queue<int> q;
q.enq(6);
int t = q.deq();

Queue<int> q;
q.enq(6);
q.enq(7);
int t = q.deq();

Queue<int> q;
q.enq(6);
q.enq(7);
int t = q.deq();
int t1 = q.deq();

Lets think about a Queue

What is a queue?

We consider 2 API functions:
• enq(value v) - enqueues the value v
• deq() - returns the value at the front of the queue

Queue<int> q;
int t = q.deq();

Lets think about a Queue

What is a queue?

We consider 2 API functions:
• enq(value v) - enqueues the value v
• deq() - returns the value at the front of the queue

Queue<int> q;
int t = q.deq();

Let’s say: None

Lets think about a Queue

This is called a sequential specification:

The sequential specification is nice! We want to base our concurrent
specification on the sequential specification!

We will have to deal with the non-determinism of concurrency

Thinking about a concurrent queue

Queue<int> q;
q.enq(6);
q.enq(7);
int t = q.deq();

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);
int t = q.deq();

Global variable:
CQueue<int> q; Lets call our concurrent queue “CQueue”

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

what can be stored in t after this concurrent program?

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

what can be stored in t after this concurrent program?
Can t be 256?

Thinking about a concurrent queue

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

what can be stored in t after this concurrent program?
Can t be 256? it should be one of {None, 6, 7}

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

t is 6

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

t is 6 t is 6

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

t is Nonet is 6 t is 6

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

q.enq(6);

q.enq(7);

int t = q.deq();

t is Nonet is 6 t is 6

Can t ever
be 7?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

int t = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

int t = q.deq();

q.enq(6);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t = q.deq();

Construct a sequential timeline of API calls
Any sequence is valid:

Can t ever
be 7?

q.enq(7);

int t = q.deq();

q.enq(6);

The events of Thread 0
don’t appear in the same
order of the program!

This should not be allowed!

Sequential Consistency

• Valid executions correspond a
sequentialization of object method

• The sequentialization must respect per-thread
”program order”, the order in which the
object method calls occur in the thread

• Events across threads can interleave in any
way possible

Sequential Consistency

• Valid executions correspond a
sequentialization of object method

• The sequentialization must respect per-thread
”program order”, the order in which the
object method calls occur in the thread

• Events across threads can interleave in any
way possible

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

Sequential Consistency

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

Reminder that N and M are events, not instructions

Sequential Consistency

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

Reminder that N and M are events, not instructions

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

time

If N and M execute 150 events each, there are more
possible executions than particles in the observable universe!

Don’t think about all possible interleavings!

• Higher-level reasoning:
• I get paid 100 times and buy 100 coffees, I should break even
• If you enqueue 100 elements to a queue, you should be able to dequeue 100

elements

• Reason about a specific outcome
• Find an interleaving that allows the outcome
• Find a counter example

Reasoning about concurrent objects

To show that an outcome is possible, simply construct the sequential
sequence

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?

int t0 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?q.enq(6);

int t0 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?q.enq(6);

int t0 = q.deq();

int t1 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 6?q.enq(6);

int t0 = q.deq();

int t1 = q.deq();

q.enq(7);

Valid execution!

Are there others?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

Lets do another!

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

q.enq(6);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

q.enq(6);

int t0 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

q.enq(6);

int t0 = q.deq();

q.enq(7);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 6 and t1 == 7?

q.enq(6);

int t0 = q.deq();

q.enq(7);

int t1 = q.deq();

Found one! Are there others?

Reasoning about concurrent objects

To show that an outcome is possible, simply construct the sequential
sequence

To show that an outcome is impossible show that the outcome would
require time travel!

Reasoning about concurrent objects

To show that an outcome is possible, simply construct the sequential
sequence

To show that an outcome is impossible show that the outcome would
require time travel!

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

int t0 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

int t0 = q.deq();

q.enq(7);

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

int t0 = q.deq();

q.enq(7);

int t1 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

q.enq(6);

int t0 = q.deq();

q.enq(7);

int t1 = q.deq();

Thread 0:
q.enq(6);
q.enq(7);

Global variable:
CQueue<int> q;

Thread 1:
int t0 = q.deq();
int t1 = q.deq();

Can t0 == 0 and t1 == 7?

q.enq(6);

int t0 = q.deq();

q.enq(7);

int t1 = q.deq();

Time travel in our specifications should not be allowed!

What does that cycle mean?

• Justify your current state with something you will do in the future:
• I have my phone right now because I will give it to myself tomorrow
• Causality cycles: The past influences the future, the future can’t influence the past

Lets do one more
examples

Thread 0:
q.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> q;

Thread 1:
q.enq(6);

Is it possible for t0 == 6
but the queue to contain 7
after the program?

Thread 0:
q.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> q;

Thread 1:
q.enq(6);

Is it possible for t0 == 6
but the queue to contain 7
after the program?

q.enq(6);

Thread 0:
q.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> q;

Thread 1:
q.enq(6);

Is it possible for t0 == 6
but the queue to contain 7
after the program?

q.enq(6);

int t0 = q.deq();

Thread 0:
q.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> q;

Thread 1:
q.enq(6);

Is it possible for t0 == 6
but the queue to contain 7
after the program? int t0 = q.deq();

q.enq(6);

q.enq(7);

Thread 0:
q.enq(7);
int t0 = q.dec();

Global variable:
CQueue<int> q;

Thread 1:
q.enq(6);

Is it possible for t0 == 6
but the queue to contain 7
after the program? int t0 = q.deq();

q.enq(6);

q.enq(7);

time travel!
not allowed!

Do we have our specification?

• Is sequential consistency a good enough specification for concurrent
objects?

• It’s a good first step, but relative timing (happens-before) interacts
strangely with concrete time.

• We will need something stronger.

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

each method as a start, and end time stamp

q.enq(7)

method is called

method returns

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This timeline seems
strange...

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7)

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

real time line

q.enq(7);

q.enq(6)

q.deq()==6

This execution is allowed in
sequential consistency!

SC doesn’t care about real time,
only if it can construct its virtual
sequential timeline

q.enq(6);

q.deq() == 6

q.enq(7);

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

p.enq(11)

p.deq() == 12

p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

2 objects now: p and q
Consider each object in isolation

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

q.enq(2)

q.deq() == 2

q.enq(1)

Sequential consistency and real time

• Add in real time:

Thread 0

Thread 1

Now consider them all together

p.enq(11) q.enq(2) p.deq()==12

q.enq(1) q.deq()==2p.enq(12)

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2)

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2)

q.enq(1);

where to put this?

Thread 0:
p.enq(11)
q.enq(2)
p.deq()==12

Global variable:
CQueue<int> p,q;

Thread 1:
q.enq(1)
p.enq(12)
q.deq()==2

p.deq()== 12;

p.enq(11);

p.enq(12);

q.deq()== 2;

q.enq(2)

q.enq(1);

where to put this?
before p.enq(12)

after q.enq(2)

What does this mean?

• Even if objects in isolation are sequentially consistent

• Programs composed of multiple objects might not be!

• We would like to be able to use more than 1 object in our programs!

Next week

• A strong specification: Linearizability
• Strictly stronger than sequential consistency
• Reasoning about sequential consistency is still incredibly valuable

• Progress properties of concurrent objects

• Start looking at how to implement a linked list

