
CSE113: Parallel Programming
April 20, 2021

• Topic: Practical Mutual Exclusion
• Atomic RMW locks
• Optimizing locks
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Announcements

• Homework due on Thursday at Midnight
• Gan set up a submission link on Canvas
• Questions:

• Visit a few from Canvas
• Should Gan do office hours on Thursday instead of Friday?

• 10 - 11 AM on Thursday

• My office hours are on Wednesday
• Unfortunately do not have many on Thursday



Announcements

• Next homework:
• Assigned by midnight Thursday

• Sign up for Piazza:
• Lots of good discussions
• Only 50 of you have

• I trust things are going well on Discord...



Announcements

• A little bit out of sync with the book
• We’ll do first half of Chapter 7 today
• Next lecture will be last of Chapter 7 and some of Chapter 8
• Still on track to start Module 3 (concurrent data structures) in 1 week



Quiz

• Canvas Quiz

• Peterson’s algorithm is starvation free: true or false

• atomic operations provide mutual exclusion



Quiz

• Canvas Quiz

• Go over answers



Before we start: C++ lock_guard

• C++ lock_guard - Pretty cool!
• Uses C++ constructor and destructor Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
if (tylers_account < -100) {
printf(“warning!\n”);
return;

}
m.unlock();
return;

recall this snippet of code.
What was the issue?
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Before we start: C++ lock_guard

• C++ lock_guard - Pretty cool!
• Uses C++ constructor and destructor Tyler’s coffee addiction:

lock_guard<mutex> lck(m);
tylers_account -= 1;
if (tylers_account < -100) {
printf(“warning!\n”);
log_warning_to_file();
return;

}
return;

recall this snippet of code.
What was the issue?

Or we use lock_guard

Constructor locks the mutex,
destructor unlocks it.

Writing to files can throw exceptions, if
we don’t handle the exception, then the system
could deadlock. 

pass the mutex into the constructor.
No other methods!



Lecture Schedule

• Atomic RMW mutexes
• Exchange
• CAS
• Ticket

• Optimizations
• Relaxed peeking
• Backoff
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From previous lecture: Peterson’s mutex

• Peterson’s algorithm: 2 threaded mutex implementation
• 2 flag values
• 1 victim

• We used primitives: atomic loads and stores

• Proof in book:
• If you only use loads and stores, synchronizing N threads requires O(N) 

memory
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From previous lecture: Peterson’s mutex

• Peterson’s algorithm
• 2 threads
• 2 flag values

• Generalizations:
• Filter lock - N threaded Peterson’s algorithm (uses 2*N memory)
• Bakery lock - N threaded fair mutex (uses 2*N memory)
• Implementations in the Book! Chapter 3



From previous lecture: Peterson’s mutex

• Peterson’s algorithm
• 2 threads
• 2 flag values

• Implementing Peterson’s was difficult because of loads/stores 
interleaving!



From previous lecture: Peterson’s mutex

• Peterson’s algorithm
• 2 threads
• 2 flag values

• Implementing Peterson’s was difficult because of loads/stores 
interleaving!

• But what if there was another way...



Buggy Mutex implementation

atomic_bool for our memory location

mutex is initialized to “free”



Buggy Mutex implementation

Once the mutex is available, we will claim it

While the mutex is not available (i.e. another thread has it)



Buggy Mutex implementation

To release the mutex, we just set it back to 0 (available)



Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

Lets try another interleaving

Buggy Mutex 
implementation: 
Analysis



Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0

Buggy Mutex 
implementation: 
Analysis



Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

returns 0

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0

flag.store(1)

Mutex acquire Critical section

Critical sections overlap! This mutex
implementation is not correct!

Buggy Mutex 
implementation: 
Analysis

flag.load flag.store(1)



What went wrong?

• The load and stores from two threads interleaved
• What if there was a way to prevent this?



What went wrong?

• The load and stores from two threads interleaved
• What if there was a way to prevent this?

• Atomic RMWs
• operate on atomic types (we already have atomic types)
• recall the non-locking bank accounts: 
atomic_fetch_add(atomic *a, value v);



What is a RMW

A read-modify-write consists of:
• read
• modify
• write
done atomically, i.e. they cannot interleave.

Typically returns the value (in some way) from the read.



atomic_fetch_add

Recall the lock free account

Atomic Read-modify-write (RMWs): primitive instructions that 
implement a read event, modify event, and write event indivisibly, i.e. it 
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
int tmp = *addr; // read
tmp += value;    // modify
*addr = tmp;     // write

}



atomic_fetch_add

Recall the lock free account

Atomic Read-modify-write (RMWs): primitive instructions that 
implement a read event, modify event, and write event indivisibly, i.e. it 
cannot be interleaved.

int atomic_fetch_add(atomic_int * addr, int value) {
int stash = *addr; // read
int new_value = value + stash;    // modify
*addr = new_value;     // write
return stash;      // return previous value in the memory location

}



Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

lock-free accounts

time
time
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time
time
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Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

time
time

tmp = tylers_account.load();
tmp -= 1;
tylers_account.store(tmp);

tmp = tylers_account.load();
tmp += 1;
tylers_account.store(tmp);

cannot interleave!

either way, account breaks even at the end!

lock-free accounts



RMW-based locks

• A few simple RMWs enable lots of interesting mutex implementations

• When we have simpler implementations, we can focus on 
performance



Lecture Schedule

• Atomic RMW mutexes
• Exchange
• CAS
• Ticket

• Optimizations
• Relaxed peeking
• Backoff



First example: Exchange Lock

• Simplest atomic RMW will allow us to implement an:

• N-threaded mutex with 1 bit!



First example: Exchange Lock

value atomic_exchange(atomic *a, value v);

Loads the value at a and stores the value in v at a. Returns the value 
that was loaded.
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value atomic_exchange(atomic *a, value v);

Loads the value at a and stores the value in v at a. Returns the value 
that was loaded.

value atomic_exchange(atomic *a, value v) {

value tmp = a.load();

a.store(v);

return tmp;
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First example: Exchange Lock

value atomic_exchange(atomic *a, value v);

Loads the value at a and stores the value in v at a. Returns the value 
that was loaded.

value atomic_exchange(atomic *a, value v) {

value tmp = a.load();

a.store(v);

return tmp;

}

no ”modify”
step!



First example: Exchange Lock

Lets make a mutex with just one atomic bool!



First example: Exchange Lock

Lets make a mutex with just one atomic bool!

one atomic flag

initialized to false



First example: Exchange Lock

Lets make a mutex with just one atomic bool!

one atomic flag

initialized to false

main idea:

The flag is false when the mutex
is free. 

The flag is true when some
thread has the mutex.



First example: Exchange Lock



First example: Exchange Lock

So what’s going on?



First example: Exchange Lock

So what’s going on?

Two cases: 

mutex is free: the value loaded is false. We store 
true. The value returned is False, so we don’t spin

mutex is taken: the value loaded is true, we put 
the SAME value back (true). The returned value is 
true, so we spin.



First example: Exchange Lock

Unlock is simple: just store false to the flag, 
marking the mutex as available.



Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1
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Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

EXCH()

returns false

Mutex request Mutex acquire
critical section

flag.store(false)

Mutex release

mutex works
with one thread
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m.lock();
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Thread 0:
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Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

recall RMWS can’t overlap!

Mutex request

EXCH()

EXCH()

returns true

returns false

This will spin until core 1 unlocks
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Mutex request
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EXCH()

core 2

core 3

Mutex request

Mutex request

EXCH()

EXCH()

what about 4 threads?

atomic operations can’t overlap

Critical section

spin
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mutex release
flag.store(false)

EXCH()

EXCH()

EXCH()

some thread 
will win

Mutex acquired

spin

spin



First example: Exchange Mutex

• Questions?



Lecture Schedule

• Atomic RMW mutexes
• Exchange
• CAS
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• Optimizations
• Relaxed peeking
• Backoff



Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace);
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Checks if value at a is equal to the value at expected. If it is equal, swap with replace.
returns True if the values were equal. False otherwise.



Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace);

Checks if value at a is equal to the value at expected. If it is equal, swap with replace.
returns True if the values were equal. False otherwise.
expected is passed by reference: the previous value at a is returned



Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
value tmp = a.load();
if (tmp == *expected) {
a.store(replace);
return true;

}
*expected = tmp;
return false;

}



Most versatile RMW: Compare-and-swap

• Exchange was the simplest RMW (no modify)

• Most versatile RMW: Compare-and-swap (CAS)

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
value tmp = a.load();
if (tmp == *expected) {
a.store(replace);
return true;

}
*expected = tmp;
return false;

}

we will discuss
this soon!



Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
value tmp = a.load();
if (tmp == *expected) {
a.store(replace);
return true;

}
*expected = tmp;
return false;

}

a:0

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);
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Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
value tmp = a.load();
if (tmp == *expected) {
a.store(replace);
return true;

}
*expected = tmp;
return false;

}

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

a:6

true



Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
value tmp = a.load();
if (tmp == *expected) {
a.store(replace);
return true;

}
*expected = tmp;
return false;

}

a:16

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);



Most versatile RMW: Compare-and-swap

bool atomic_compare_exchange_strong(atomic *a, value *expected, value replace) {
value tmp = a.load();
if (tmp == *expected) {
a.store(replace);
return true;

}
*expected = tmp;
return false;

}

a:16

thread 0:
// some atomic int address a
int e = 0;
bool s = atomic_CAS(a,&e,6);

false 16



CAS lock
Pretty intuitive: only 1 bit required again:



CAS lock

Check if the mutex is free, if so, take it. compare the mutex to free (false), if so, replace it with
taken (true). Spin while the thread isn’t able to take
the mutex.



CAS: versatile

• Why do I say it is versatile?



CAS: versatile

• Why do I say it is versatile?

• We can implement ANY other RMW using CAS!



Implementing atomic_fetch_add

int atomic_fetch_add(atomic_int *a, value v) {
// implement me using CAS

}



Implementing atomic_fetch_add

int atomic_fetch_add(atomic_int *a, value v) {
int old_val = a->load();
int new_val = old_val + v;
atomic_compare_exchange(a, &old_val, new_val);

}



Implementing atomic_fetch_add

int atomic_fetch_add(atomic_int *a, value v) {
do {
int old_val = a->load();
int new_val = old_val + v;
bool success = atomic_compare_exchange(a, &old_val, new_val);

} while (!success)
}



Implementing atomic_fetch_add

int atomic_fetch_add(atomic_int *a, value v) {
do {
int old_val = a->load();
int new_val = old_val + v;
bool success = atomic_compare_exchange(a, &old_val, new_val);

} while (!success)
}

could be any operation!



Implementing RMWs with CAS

• Gives you access to a wide range of operations!
• atomic_fetch_add for float (not often provided)
• You have to be careful with bit casting

• Why might this be difficult to implement?
• Not provided in C++
• Not provided for GPUs either (generally)
• But very useful, especially for reduction and flow algorithms



How is CAS implemented?

• X86 has an actual instruction
• ARM and POWER are load linked store conditional
• Show Godbolt example



Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a
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thread 1:
a.store(..);
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Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

thread 1:
a.store(..);

once the lock is released then we can access



Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a Pros: if there is contention, the CAS
will complete successfully

thread 2:
a.store(..);

thread 1:
a.store(..);



Pessimistic Concurrency

• X86 has an actual instruction: lock the memory location
• Known as Pessimistic Concurrency
• Assume conflicts will happen and defend against them from the start

thread 0:
atomic_CAS(a,...);

a

Cons: if no other threads are contending, lock
overhead is high



Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

For this example consider an atomic increment
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Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

T0_exclusive = 1

before we store, we have to check if there
was a conflict.
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can’t store because our exclusive bit was
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Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
tmp = load_exclusive(a,...);
tmp += 1;
store_exclusive(a, tmp);

a

thread 1:
a.store(...)

T0_exclusive = 0

can’t store because our exclusive bit was
changed, i.e. there was a conflict!

solution: loop until success:
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thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 0
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• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1



Optimistic Concurrency

• ARM has load/store exclusive
• Known as Optimistic Concurrency
• Assume no conflicts will happen. Detects and reacts to them.

thread 0:
do {
tmp = load_exclusive(a,...);
tmp += 1;
} while(!store_exclusive(a, tmp));

a

T0_exclusive = 1

Pros: very efficient when there is no conflicts!

Cons: conflicts are very expensive!

Spinning thread might starve (but not indefinitely)
if other threads are constantly writing.



Back to mutexes...

• Speaking of starvation:

• Are the Exchange lock or Spin lock starvation free?
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Analysis

core 0

core 1

mutex
request

EXCH()

Is this mutex starvation Free?

critical section
flag.store(false)

EXCH()

spin

mutex
release

mutex
request

EXCH() EXCH() EXCH()

mutex
acquire

Delay!!!  (OS preemption, garbage 
collector, energy throttling)

mutex
request

EXCH()

mutex
acquire critical section

EXCH()

missed it!
spin



How does this look in practice

• Try it



How can we make this more fair?

• Use a different atomic instruction:
• int atomic_fetch_add(atomic_int *a, int v);

We’ve seen this one before!



How can we make this more fair?

• Use a different atomic instruction:
• int atomic_fetch_add(atomic_int *a, int v);

We’ve seen this one before!
intuition: take a ticket

like at Zoccoli’s!



Lecture Schedule

• Atomic RMW mutexes
• Exchange
• CAS
• Ticket

• Optimizations
• Relaxed peeking
• Backoff
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• Ticket lock: instead of 1 bit, we need 
an integer for the counter.

• The mutex also needs to track of 
which ticket is currently being served



Ticket lock

• Ticket lock: instead of 1 bit, we need 
an integer for the counter.

• The mutex also needs to track of 
which ticket is currently being served

Get a unique number

Spin while your number isn’t being served

To release, increment the number that’s currently
being served.
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Analysis

core 0

core 1

mutex
request

atomic_add

Is this mutex starvation Free?

atomic_add

mutex
request

my_number is 0,
counter is now 1

my_number is 1
counter is now 2

currently_serving is 0

critical sectionmutex
acquire

load()

spin

load() load()

mutex
release

serving
+= 1

Delay!!!  (OS preemption, garbage 
collector, energy throttling)

mutex
request

atomic_add

my_number is 2,
counter is now 3

currently_serving is 1

spin

load()
mutex
acquire



Fair but at what cost?

• Example
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• the Writes in RMWs cost extra; rather than always modify, we can do a simple 

check first
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• What about the load in the loop? Remember the memory fence? Do 
we need to flush our caches every time we peek?
• We only need to flush when we actually acquire the mutex



Optimizations: relaxed peeking

• What about the load in the loop? Remember the memory fence? Do 
we need to flush our caches every time we peek?
• We only need to flush when we actually acquire the mutex



core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

C0 memory operations are performed and flushed

C1 memory operations have not yet been performed and cache is invalidated



Relaxed atomics

• Enter expert mode!
• explicit atomics with relaxed semantics

• Beware! they do not provide a memory fence! 

• Only use when a memory fence is issued later before leaving your mutex 
implementation. Good for “peeking” before you actually execute your RMW.



Demo

• Example in terminal


