
CSE113: Parallel Programming
April 15, 2021

• Topic: Mutual Exclusion Continued
• Multiple Mutexes
• Implementing Mutexes

• Atomic instructions
• 2-threaded mutex
• N-threaded mutex
• Fair mutex

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release

Announcements

• Reese’s first class J
• He can tell you more about mutex implementations on GPUs
• He has a very special announcement (Piazza)

• Homework 1 is posted:
• Due April 22

• My next office hours are on Wednesday, 3 - 5 PM
• TAs have office hours daily
• They are more helpful with tool flows (docker, VSCode)
• My last office hours before assignment 1 is due!

Homework

• Your first concern is correctness
• speedups mean nothing if the result is incorrect!

• what sort of speedups have people seen?
• It will change based on your CPU, compiler and system!
• Different pipelines, super scaler, OS has different schedulers

• my speeds: ~6.5x for part 1. ~3.2x for part2

• report does not require too much detail!

Quiz

• Open Quiz for 3 minutes

Quiz

• Open Quiz for 3 minutes

• Go over quiz answers

Quick Performance Consideration

Today isn’t about performance, but try to keep mutual exclusion
sections small! Protect only data conflicts!

Code example with overhead

Performance consideration

Today isn’t about performance, but try to keep mutual exclusion
sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

Long periods of waiting in the threads

Overhead

Overhead

mutex request

Long periods of
waiting in the
threads

Performance consideration

Today isn’t about performance, but try to keep mutual exclusion
sections small! Protect only data conflicts!

Code example with overhead

core 0

core 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire

overlap the overhead (i.e. computation without any data conflicts)

Overhead

Overhead Peronal_account

Overhead

Lecture Schedule

• Multiple Mutexes

• Lock-free accounts

• Implementing Mutexes
• Atomic instructions
• 2-threaded mutex

• Intro to performance

Lecture Schedule

• Multiple Mutexes

• Lock-free accounts

• Implementing Mutexes
• Atomic instructions
• 2-threaded mutex

• Intro to performance

Lecture Schedule

• Multiple Mutexes

• Implementing Mutexes
• Atomic instructions
• 2-threaded mutex

• Introduction to Mutex performance

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• Need to protect both of them using a mutex
• Easy, we can just the same mutex
• Show implementation

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request personal_account += 1mutexP acquire mutexP release

Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

Code example

Managing multiple mutexes

Consider 2 memory locations: x and y.

Consider 3 functions that are executing concurrently

// reads/writes to x
void foo(int *x);

// reads/writes to y
void bar(int *y);

// reads/writes to x and y
void gaz(int *x, int *y);

Managing multiple mutexes

Consider 2 memory locations: x and y.

Consider 3 functions that are executing concurrently

// reads/writes to x
void foo(int *x) {
g_mutex.lock;
// operate on x
g_mutex.unlock;
}

// reads/writes to y
void bar(int *y) {
g_mutex.lock;
// operate on y
g_mutex.unlock;
}

// reads/writes to x and y
void gaz(int *x, int *y) {
g_mutex.lock;
// operate on x and y
g_mutex.unlock;
}

solution: use 1 global mutex: g_mutex

Managing multiple mutexes

Consider 2 memory locations: x and y.

Consider 3 functions that are executing concurrently

// reads/writes to x
void foo(int *x) {
g_mutex.lock;
// operate on x
g_mutex.unlock;
}

// reads/writes to y
void bar(int *y) {
g_mutex.lock;
// operate on y
g_mutex.unlock;
}

// reads/writes to x and y
void gaz(int *x, int *y) {
g_mutex.lock;
// operate on x and y
g_mutex.unlock;
}

solution: use 1 global mutex: g_mutex issue: none
of these functions can
execute in parallel!

Managing multiple mutexes

Consider 2 memory locations: x and y.

Consider 3 functions that are executing concurrently

// reads/writes to x
void foo(int *x) {
x_mutex.lock;
// operate on x
x_mutex.unlock;
}

// reads/writes to y
void bar(int *y) {
y_mutex.lock;
// operate on y
y_mutex.unlock;
}

// reads/writes to x and y
void gaz(int *x, int *y) {
x_mutex.lock;
y_mutex.lock;
// operate on x and y
x_mutex.unlock;
y_mutex.unlock;
}

A higher performant solution: multiple mutexes for the data you access: x_mutex, y_mutex

now foo and
bar can execute
in parallel!

added complexity though

Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• They need to examine the accounts at the same time. They need to
acquire both locks.

Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• Code example

Multiple mutexes

• Our program deadlocked! What happened?

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

IRS has the personal mutex and won’t release it until it acquires the business mutex.
UCSC has the business mutex and won’t release it until it acquires the personal mutex.

This is called a deadlock!

Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 1 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur

Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 1 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur

Double check with testing

Programming with mutexes is tricky!

make sure all data conflicts are protected with a mutex

keep critical sections small

balance between having many mutexes (provides performance) but
gives the potential for deadlocks

But its better than the alternative - reasoning about data conflicts.

Lecture Schedule

• Multiple Mutexes

• Lock-free accounts

• Implementing Mutexes
• Atomic instructions
• 2-threaded mutex

• Intro to performance

Atomic RMWs

Other ways to implement accounts?

Atomic Read-modify-write (RMWs): primitive instructions that
implement a read event, modify event, and write event indivisibly, i.e. it
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
int tmp = *addr; // read
tmp += value; // modify
*addr = tmp; // write

}

other operations: max, min, etc.

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

tylers_account -= 1;

Tyler’s employer

tylers_account += 1;

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Two indivisible events.
Either the coffee or the employer comes first
either way, account is 0 afterwards.

Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Code example

Atomic RMWs

Pros? Cons?

Atomic RMWs

Pros? Cons?

Not all architectures support RMWs (although more common with
C++11)

Limits critical section (what if account needs additional updating?)

atomic types need to propagate through the entire application

Lecture Schedule

• Multiple Mutexes

• Lock-free accounts

• Implementing Mutexes
• Atomic instructions
• 2-threaded mutex

• Intro to performance

Lecture Schedule

• Multiple Mutexes

• Lock-free accounts

• Implementing Mutexes
• Atomic instructions
• 2-threaded mutex

• Intro to performance

Mutex Implementations

• A mutex is not a primitive data structure! (built out of primitives)
• think back to your data structure class
• Stacks and queues are not primitives, they have an API and we implement their API

using primitives: arrays, int, etc.

• While C++ has a fine mutex, we want to learn how to implement our own.
• Why?

Building blocks

• Memory reads and memory writes
• later: read-modify-writes

• We need to guarantee that our reads and writes actually go to
memory.
• And other properties we will see soon

• To do this, we will use C++ atomic operations

A historical perspective

• Adding concurrency support to a programming language is hard!
• The memory model defines how threads can safely share memory

• Java tried to do this,

wikipedia

Brian Goetz (2019)

A historical perspective

• How is C++?

• Has issues (imprecise, not modular)
• but at least considered safe
• Specification makes it difficult to reason about all programs
• Open problem!

• Luckily mutexes (and their implementations) avoid the problematic
areas of the language!

Our primitive instructions

• Types: atomic_

• Interface (C++ might provide overloaded operators):
• load
• store

• Properties:
• loads and stores will always go to memory.
• compiler memory fence
• hardware memory fence

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

Atomic properties

• loads and stores will always go to memory

• Compiler example, performance difference

• Compiler makes reasoning about parallel code hard, but big
performance improvements:
• O(2048) vs. O(1)

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

can be optimized to: can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

a[i] = 0;
a[i] = 1;

a[i] = 1;

x = a[i];
x2 = a[i];

x = a[i];
x2 = x;

a[i] = 6;
x = a[i];

x = 6;

can be optimized to: can be optimized to: can be optimized to:

Atomic properties

• Compiler Fence

• Compiler can be aggressive with memory operations:
• For non-atomic memory locations, the following optimizations are valid

• And many others... especially when you consider mixing with other
optimizations
• Very difficult to understand when/where memory accesses will actually occur

in your code

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

Compiler cannot keep personal_account
in a register past the mutex

because this thread needs to see the
updated view

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

what can go wrong if the compiler doesn’t
write values to memory?

initially personal_account is 0

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1;

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

reg = *personal_account - 1; *personal_account = reg;

personal_account is -1

loads 0

what can go wrong if the compiler doesn’t
write values to memory?

loads 0initially personal_account is 0

writes 1

Atomic properties

• Compiler Fence

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

compiler example

• Memory Fence (or Memory Barrier)

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

Compiler example: dmb for ARM

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account 0

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account 0

mutex: C0
personal_account NA

mutex: C0
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: Free
personal_account -1

mutex: Free
personal_account NA

mutex: Free
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account 0

mutex: C1
personal_account 0

Possible for the
mutex message
to travel through
the cache before the
personal_account information!

stale value!

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account 0

rewind

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C0
personal_account -1

mutex: C0
personal_account NA

mutex: C0
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: free
personal_account -1

mutex: free
personal_account NA

mutex: free
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account NA

mutex: C1
personal_account -1

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence

• Memory Fence (or Memory Barrier)

C0 C1

L1
cache

L1
cache

LLC cache

Personal_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request mutexP acquire mutexP release

C0

C1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

mutex: C1
personal_account -1

memory fence

memory fence

got the right value

• Memory Fence (or Memory Barrier)

different architectures have different memory barriers

Intel X86 naturally manages caches in order

ARM and PowerPC let cache values flow out-of-order
GPUs let caches flow out-of-order

RISC-V has two models:
more like x86: easier to program
more like ARM: faster and more energy efficient

For mutexes, atomics will naturally handle the memory fences for us!

Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Atomics

• What do those fences (compiler and memory) give us?

• Atomics were designed so that we can implement things like
mutexes!

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

C0 memory operations are performed and flushed

C1 memory operations have not yet been performed and cache is invalidated

Mutex Implementations

• We will just consider two threads for now, with thread ids 0, 1

• A first attempt:
• A mutex contains a boolean.

• The mutex value set to 0 means that it is free. 1 means that some thread is
holding it.

• To lock the mutex, you wait until it is set to 0, then you store 1 in the flag.

• To unlock the mutex, you set the mutex back to 0.

Mutex Implementations

atomic_bool for our memory location

mutex is initialized to “free”

Mutex Implementations

Once the mutex is available, we will claim it

While the mutex is not available (i.e. another thread has it)

Mutex Implementations

Once the mutex is available, we will claim it

While the mutex is not available (i.e. another thread has it)

Whats up with this while loop?

Mutex Implementations

To release the mutex, we just set it back to 0 (available)

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

m.request

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)

Thread 0:
m.lock();
m.unlock();
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)

Mutex request

flag.load flag.load flag.load

Mutual Exclusion property!
critical sections do not overlap!

returns 1

Thread 0:
m.lock();
m.unlock();
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 1

spin!!

flag.load flag.load flag.load flag.load flag.load flag.load

returns 0

Mutex acquire Critical section

flag.store(1)

Mutex request

flag.load flag.load flag.load

Mutual Exclusion property!
critical sections do not overlap!

returns 1

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex releaseload load load load loadload load load load load

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

Lets try another interleaving

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag.load

returns 0

flag.store(1)

Mutex acquire Critical section

flag.store(0)

Mutex release

flag.load

Mutex request
returns 0

flag.store(1)

Mutex acquire Critical section

Critical sections overlap! This mutex
implementation is not correct!

Mutex Implementations

• Second attempt:
• A flag for each thread (2 flags)

• If you want the mutex, set your flag to 1.

• Spin while the other flag is 1 (the other thread has the mutex)

• To release the mutex, set your flag to 0

Mutex Implementations

two flags this time

both initialized to 0

Mutex Implementations

Thread id (0, or 1)

Mark your intention to take the lock

Wait for other thread to leave the
critical section

Mutex Implementations

Thread id (0, or 1)

Mark your flag to say you have left the
critical section.

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Mutex acquire Critical section

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].loadflag[0].store(1)

returns 0

Mutex acquire Critical section Mutex release

flag[0].store(1)

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].load

Mutex acquire Critical section Mutex release

Mutex request

flag[0].load

Mutex acquire

returns 0

flag[0].store(1) flag[0].store(1)

flag[1].store(1) flag[0].load flag[0].load flag[0].load

Critical section

flag[1].store(1)

Mutex release

critical sections do not
overlap!

proof?

returns 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

returns 1

returns 1

Thread 0:
m.lock();
m.unlock();

Analysis

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

flag[1].load

flag[0].load

returns 1

returns 1

flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load flag[0].load

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

Both will spin forever!

Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no
thread currently holds the mutex, the mutex must be acquired by one
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

Mutex Implementations

Third attempt

Mutex Implementations

back to a single variable

initialized to -1

Mutex Implementations

Victims only job is to spin

Volunteer to be the victim

Mutex Implementations

No unlock!

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

victim.loadvictim.store(0)

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

victim.loadvictim.store(0)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load

spins forever if
the second thread
never tries to take the mutex!

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns ?

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire Mutex release Mutex request

victim.store(1)

core 0

Mutex request

Thread 0:
m.lock();
m.unlock();

core 1

Mutex request

Thread 1:
m.lock();
m.unlock();

victim.loadvictim.store(0)

victim.loadvictim.store(1)

returns 0

victim.load victim.load victim.load victim.load victim.load victim.load victim.load victim.load

critical section

Mutex acquire Mutex release Mutex request

victim.store(1)

victim.load

returns 1

Mutex acquire

victim.load victim.load victim.load

Mutex Implementations

Finally, we can can make a mutex that works:

Use flags to mark interest
Use victim to break ties

Called the Peterson Lock

Mutex Implementations

flags and victim

No victim and no threads are interested in the critical section

Mutex Implementations

j is the other thread

Mark ourself as interested

volunteer to be the victim in case of a tie

Spin only if:
there was a tie in wanting the lock,
and I won the volunteer raffle to spin

Mutex Implementations

mark ourselves as uninterested

Thread 0:
m.lock();
m.unlock();

previous flag
issue

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

flag[1].load

Mutex request

flag[0].load

returns 1

flag[0].store(1)

flag[1].store(1) flag[0].load flag[0].load flag[0].load

Both will spin forever!

flag[0].load flag[0].load flag[0].load flag[0].load

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

how does petersons solve this?

Thread 0:
m.lock();
m.unlock();

Tie breaking with
victim

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

only one of the stores will be in victim (one will overwrite the other)

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

only one of the stores will be in victim (one will overwrite the other)
1 0

victim.loadflag[0].load

1 0

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(1)

Tie breaking with
victim

Thread 0:
m.lock();
m.unlock();

Thread 1:
m.lock();
m.unlock();

core 0

core 1

Mutex request

Mutex request

flag[0].store(1)

flag[1].store(1)

victim.store(0)

victim.store(1)

victim.loadflag[1].load

1 0

victim.loadflag[0].load

1 0

Mutex acquire Critical section

victim.loadflag[1].load

1 0
victim.loadflag[1].load

1 0

Mutex release

flag[1].store(1)

victim.loadflag[1].load

0 0

Mutex acquire

Tie breaking with
victim

core 0

Mutex request

flag[1].loadflag[0].store(1)

will spin forever!

flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load flag[1].load

Thread 0:
m.lock();
m.unlock();

previous victim
issue

Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0

Thread 0:
m.lock();
m.unlock();

previous flag
issue

core 0

Mutex request

flag[0].store(1) victim.store(0) victim.loadflag[1].load

0 0
Mutex acquire

we can enter critical section because the other thread isn’t interested

Critical section

Does it satisfy mutual exclusion?

Proof by contradiction sketch

Does it satisfy mutual exclusion?

Proof by contradiction sketch

Assume C0 and C1 are both in the critical section. That means both of them broke out of the while loop

Does it satisfy mutual exclusion?

Proof by contradiction sketch

Assume C0 and C1 are both in the critical section. That means both of them broke out of the while loop

We know from the flag line that both flags are set to 1.

flag[0] is 1

flag[1] is 1

what we know:

Does it satisfy mutual exclusion?

Proof by contradiction sketch

Assume C0 and C1 are both in the critical section. That means both of them broke out of the while loop

We know from the flag line that both flags are set to 1.

We know from the victim line that the victim must be equal to one of the thread ids

flag[0] is 1

flag[1] is 1

what we know:

Does it satisfy mutual exclusion?

Proof by contradiction sketch

Assume C0 and C1 are both in the critical section. That means both of them broke out of the while loop

We know from the flag line that both flags are set to 1.

We know from the victim line that the victim must be equal to one of the thread ids

flag[0] is 1

flag[1] is 1

what we know:

For thread 0 to be in critical section, Thread 1 must have written victim while Thread 0 was spinning
But then Thread 1 would be spinning (contradiction)

Vice Versa

What about starvation

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

recall the starvation property:

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim

What about starvation

time

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

at this point, C1 is the victim and is spinning

concurrent execution

at this point, C0 volunteers to be the victim

Threads take turns in petersons
algorithm. It is starvation free

Mutex Implementations

Peterson only works with 2 threads.

Generalizes to the Filter Lock (Read chapter 2 in the book)

So it works!

Now what about performance

Phew....

• Lots of thinking about implementations for today!

• RMWs make lock implementations much simpler
• And more performant.

• We will do those next week

Next week

• How do we make our mutexes easier to reason about and faster?
• Atomic RMWs
• Backoff
• Thread Sanitizer

