
CSE113: Parallel Programming
April 13, 2021

• Topic: Introduction to Mutual Exclusion
• Reasoning about concurrent programs
• Mutual exclusion properties
• Multiple mutexes

time

mutex request

mutex acquire

account -= 1

mutex release

time

mutex request

mutex acquire

account += 1

mutex release



Announcements

• No more asynchronous lectures planned

• Homework 1 is posted:
• Due April 22

• My office hours are on Wednesday, 3 - 5 PM
• TAs have office hours daily
• They are more helpful with tool flows (docker, VSCode)

• New module: Mutual Exclusion!



Lecture Schedule

• Canvas Quiz 

• Notes on homework

• Reasoning about concurrency

• Mutual exclusion

• Multiple Mutexes



Lecture Schedule

• Canvas Quiz 

• Notes on homework

• Reasoning about concurrency

• Mutual exclusion

• Multiple mutexes



Quiz

• Publishing quiz on canvas:
• Open for 5 minutes



Quiz

• Publishing quiz on canvas:
• Open for 5 minutes

• Go over questions



Lecture Schedule

• Canvas Quiz 

• Notes on homework

• Reasoning about concurrency

• Mutual exclusion

• Multiple mutexes



Homework

• Demo on terminal



Lecture Schedule

• Canvas Quiz 

• Notes on homework

• Reasoning about concurrency

• Mutual exclusion

• Multiple mutexes



Embarrassingly parallel



Embarrassingly parallel

For this class: A multithreaded program is embarrassingly parallel if there are no data-
conflicts.

A data conflict is where one thread writes to a memory location that another thread 
reads or writes to concurrently and without sufficient synchronization.



Embarrassingly parallel

• Consider the following program:

There are 3 arrays: a, b, c.
We want to compute c[i] = a[i] + b[i]



Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c



Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation 
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation 
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation 
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Embarrassingly parallel

+ + + +

= = = =

array a

array b

array c

+ + + +

= = = =

Computation 
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange



Embarrassingly parallel

• The different parallelization strategies will probably have different 
performance behaviors.

• But they are both embarrassingly parallel solutions to the problem

• There is lots of research into making these types of programs go fast!
• but this module will focus on programs that require synchronization



Embarrassingly parallel

• Next Program

There are 3 arrays: a, b, c.
We want to compute c[i] = a[0] + b[i]



Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?



Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?



Embarrassingly parallel

= = = = = = = =

array a

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

All threads can read from the same value.
Conflicts only occur if a thread writes to the
value!



Embarrassingly parallel

• Next Program

There are 2 arrays: b, c
We want to compute c[0] = b[0] + b[1] + b[2] ...



Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?



Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations



Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Conflict because multiple threads write to the same location!



Embarrassingly parallel

array b

array c

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

is this problem
embarrassingly
parallel?

threads read
unique locations

Conflict because multiple threads write to the same location!

Note: Reductions have some
parallelism in them, as seen in your
homework.



We need a way how to safely share memory

• Most applications are not embarrassingly parallel



We need a way how to safely share memory

• Bank

My account: $$



We need a way how to safely share memory

• Bank

My account: $$



We need a way how to safely share memory

• Bank

My account: $$



We need a way how to safely share memory

• Bank

My account: $$



We need a way how to safely share memory

• Bank

My account: $$



We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media



We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

these can be done in parallel



We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

these can be done in parallel



We need a way how to safely share memory

• Graph algorithms

Examples:
Ranking pages on the internet
information spread in social media

potential conflict if different
threads access the red node



We need a way how to safely share memory

• Machine Learning

image from: https://www.mathsisfun.com/

Lots of machine learning is some form of matrix multiplication



We need a way how to safely share memory

• Machine Learning

image from: https://www.mathsisfun.com/

Lots of machine learning is some form of matrix multiplication

conflict!



We need a way how to safely share memory

• User interfaces

background process
that provides progress
updates to the UI.

UI updates must be
synchronized!!



Dangers of conflicts

• We will illustrate using a running bank account example



Sequential bank scenario 

• UCSC deposits $1 in my bank account after every hour I work.

• I buy a cup of coffee ($1) after each hour I work.

• I work 1M hours (which is actually true). 

• I should break even

• C++ code



Concurrent bank scenario 

• UCSC contracts me to work 1M hours.

• My bank is so impressed with my contract that they give me a line of 
credit. i.e. I can overdraw as long as I pay it back.

• UCSC deposits $1 in my bank account after every hour I work.

• I budget $1M to spend on coffee during work.

• C++ code



Concurrent bank scenario 

Tyler $ coffee

Tyler works

Tyler $ coffee Tyler $ coffee

Tyler works Tyler works Tyler works

Tyler $ coffee

This sets up a scheme where I buy coffee concurrently with working

time



Reasoning about concurrency

• What is going on?

• We need to be able to reason more rigorously about concurrent 
programs



Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program



Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program

The execution of a program gives rise to events
Important distinction between program and events



Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time



Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

time



Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time timecolor code events.
coffee thread is blue
payment thread is yellow

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}



Tyler’s coffee addiction:

for (int i = 0; i < HOURS; i++) {
tylers_account -= 1;

}

A thread is a sequential program

i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

tylers_account -= 1

i++ (i == 2)

check(i < HOURS)

tylers_account -= 1

time time

Any interleaving of the
events is a valid

execution of
the concurrent

program!

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

tylers_account += 1

j++ (j == 2)

check(j < HOURS)

tylers_account += 1

Tyler’s employer

for (int j = 0; j < HOURS; j++) {
tylers_account += 1;

}



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

consider just one loop iteration



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

one possible execution

j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS) j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

one possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

tyler_account: 0 tyler_account: -1 tyler_account: 0



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

Another possible execution

This time my account isn’t ever negative

tyler_account: 0 tyler_account: 1 tyler_account: 0



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time

Concurrent execution

i = 0 check(i < HOURS) tylers_account -= 1 i++ (i == 1) check(i < HOURS)j = 0 check(j < HOURS) tylers_account += 1 j++ (j == 1) check(j < HOURS)

j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

How many possible interleavings?
Combinatorics question:

if Thread 0 has N events
if Thread 1 has M events

𝑁 +𝑀 !
𝑁!𝑀!

tyler_account: 0 tyler_account: 1 tyler_account: 0

in our example there are 252 possible interleavings!



Reasoning about concurrency

• Not feasible to think about all interleavings!
• Lots of interesting research in pruning, testing interleavings (Professor Flanigan)
• Very difficult to debug

• Think about smaller instances of the problem, reason about the problem as 
a whole.
• Tyler spends a total of $1M on coffee
• Tyler gets paid a total of $1M
• The balance should be 0!

• Reduce the problem: If there’s a problem we should be able to see it in a 
single loop iteration.



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

concurrent execution

Lets get to the bottom of our money troubles:
For any interleaving, both of the increase and decrease must happen in some order.
So there isn’t an interleaving that will explain the issue.



i = 0

check(i < HOURS)

tylers_account -= 1

i++ (i == 1)

check(i < HOURS)

time time j = 0

check(j < HOURS)

tylers_account += 1

j++ (j == 1)

check(j < HOURS)

time

concurrent execution



tylers_account -= 1

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...



tylers_account -= 1

time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

this line of code needs to be expanded



time time

tylers_account += 1

time

concurrent execution

Remember 3 address code...

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+-= 1

*tylers_account = T1_load



time time

time

concurrent execution

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+-= 1

*tylers_account = T1_load

What if we interleave these instructions?



time time

time

concurrent execution

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+-= 1

*tylers_account = T1_load

T0_load = *tylers_account T1_load = *tylers_account T0_load -= 1 T1_load+-= 1 *tylers_account = T1_load *tylers_account = T0_load



time time

time

T0_load = *tylers_account

T0_load -= 1

*tylers_account = T0_load

T1_load = *tylers_account

T1_load+-= 1

*tylers_account = T1_load

T0_load = *tylers_account T1_load = *tylers_account T0_load -= 1 T1_load+-= 1 *tylers_account = T1_load *tylers_account = T0_load

tylers_account has -1 at the
end of this interleaving!

concurrent execution



What now?

• Data conflicts lead to many different types of issues, not just strange 
interleavings.
• Data tearing
• Instruction reorderings
• Compiler optimizations

• Rather than reasoning about data conflicts, we will protect against 
them using synchronization.



Synchronization

• A scheme where several actors agree on how to safely share a 
resource during concurrent access.

• Must define what “safely” means.

• Example:
• Two neighbors sharing a yard between a dog and cat
• Sharing refrigerator with roommates
• An account balance that is written to and read from
• Chapter 1 in text book



Lecture Schedule

• Canvas Quiz 

• Notes on homework

• Reasoning about concurrency

• Mutual exclusion

• Multiple mutexes



Mutexes

• A Synchronization object to protect against data conflicts

Simple API:

lock()
unlock()

• Before a thread accesses the shared memory, it should call lock()
• When a thread is finished accessing the shared data, it should call unlock()



Tyler’s coffee addiction:

tylers_account -= 1;

Tyler’s employer

tylers_account += 1;

A thread is a sequential program

assume a global mutex object m
protect the account access with the mutex



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

assume a global mutex object m
protect the account access with the mutex



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

A thread is a sequential program

time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

at this point, thread 0 holds the mutex.
another thread cannot acquire the mutex until thread 0 releases the mutex
also called the critical section.

mutex request mutex acquire



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex request mutex acquire mutex request



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Allowed to request

mutex acquire

disallowed!

mutex request mutex acquire mutex request



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution
Thread 0 has released the mutex

mutex request mutex acquire mutex request tylers_account -= 1 mutex release



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

Thread 1 can take the mutex
and enter the critical section

mutex request mutex acquire mutex request tylers_account -= 1 mutex release mutex acquire



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

A mutex restricts the number of allowed interleavings
Critical section are mutually exclusive: i.e. they cannot interleave

tylers_account += 1 mutex release



time

mutex request

mutex acquire

tylers_account -= 1

mutex release

time

mutex request

mutex acquire

tylers_account += 1

mutex release

time

concurrent execution

mutex request mutex acquire

Thread 1 can take the mutex
and enter the critical section

mutex request tylers_account -= 1 mutex release mutex acquire

It means we don’t have to think about 3 address code

tylers_account += 1 mutex release



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
if (tylers_account < -100) {
printf(“warning!\n”);
return;

}
m.unlock();
return;

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Make sure to unlock your mutex!

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex release

say tylers_account is -1000

printf(“warning!\n”);



time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex releaseprintf(“warning!\n”);

concurrent execution

mutex request mutex acquire mutex request tylers_account -= 1 printf(“warning!\n”)

Thread 1 is stuck!



Mutexes

• C++ provides a mutex. Example



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
if (tylers_account < -100) {
printf(“warning!\n”);
return;

}
m.unlock();
return;

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Make sure to unlock your mutex!

time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex release

say tylers_account is -1000

printf(“warning!\n”);



time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex releaseprintf(“warning!\n”);

concurrent execution

mutex request mutex acquire mutex request tylers_account -= 1 printf(“warning!\n”)

Thread 1 is stuck!



time mutex request

mutex acquire

tylers_account -= 1

time

mutex request

mutex acquire

tylers_account += 1

mutex releaseprintf(“warning!\n”);

concurrent execution

mutex request mutex acquire mutex request tylers_account -= 1 printf(“warning!\n”)

Thread 1 is stuck!

Example



Mutexes

• What about timing?



Mutexes

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism



Mutexes

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

in a parallel system without the mutex

core 0

core 1 tylers_account += 1 tylers_account += 1 tylers_account += 1

tylers_account -= 1 tylers_account -= 1 tylers_account -= 1



Mutexes

• What about timing?
• Overhead of acquiring/releasing mutex
• Cache flushing (heavier weight than coherence)
• Reduces parallelism

in a parallel system with the mutex

core 0

core 1 tylers_account += 1

tylers_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads



Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time. 
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until 
the thread that has acquired the mutex releases it.

mutex acquire

disallowed!

mutex request mutex acquire mutex request



Properties of mutexes

Three properties

• Mutual exclusion - Only 1 thread can hold the mutex at a time. 
Critical sections cannot interleave

time

concurrent execution

Other threads are allowed to request, but not acquire until 
the thread that has acquired the mutex releases it.

mutex acquiremutex request mutex acquire mutex request mutex release

allowed!



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

allowed



Properties of mutexes

Three properties

• Deadlock Freedom - If a thread has requested the mutex, and no 
thread currently holds the mutex, the mutex must be acquired by one 
of the requesting threads

time

concurrent execution

mutex request mutex request

Program cannot hang here
Either thread 0 or thread 1 must acquire the mutex

mutex acquire

also allowed



Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex 
must eventually obtain the mutex. 

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it



Properties of mutexes

Three properties

• Starvation Freedom (Optional) - A thread that requests the mutex 
must eventually obtain the mutex. 

time

concurrent execution

mutex request mutex request mutex acquire mutex release mutex request mutex acquire mutex release mutex request mutex acquireCRITICAL CRITICAL CRITICAL

Thread 1 (yellow) requests the mutex but never gets it

Difficult to provide in practice and timing variations usually provide this property naturally 



Properties of mutexes

Recap: three properties

• Mutual Exclusion: Two threads cannot be in the critical section at the same 
time

• Deadlock Freedom: If a thread has requested the mutex, and no thread 
currently holds the mutex, the mutex must be acquired by one of the 
requesting threads 

• Starvation Freedom (optional): A thread that requests the mutex must 
eventually obtain the mutex. 



Lecture Schedule

• Canvas Quiz 

• Notes on homework

• Reasoning about concurrency

• Mutual exclusion

• Multiple mutexes



Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• Need to protect both of them using a mutex
• Easy, we can just the same mutex
• Show implementation



Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel



Multiple mutexes

Lets say I have two accounts:
• Business account
• Personal account

• No reason individual accounts can’t be accessed in parallel

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release

Long periods of waiting in the threads



Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different 
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutex request mutex acquire mutex release

mutex request mutex acquire mutex release



Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different 
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release



Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different 
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1 business_account += 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexB request mutexB acquire mutexB release



Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different 
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request



Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different 
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

core 0

core 1

Peronal_account -= 1mutexP request mutexP acquire mutexP release

mutexP request personal_account += 1mutexP acquire mutexP release



Multiple mutexes

Mutexes are objects. We can create multiple versions of them to protect different 
shared data.

MutexP for personal account
MutexB for business account

Critical sections across different mutexes can overlap

Code example



Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• They need to examine the accounts at the same time. They need to 
acquire both locks



Managing multiple mutexes

Consider this increasingly elaborate scheme

My accounts start being audited by two agents:
• UCSC
• IRS

• Code example



Multiple mutexes

• Our program deadlocked! What happened?



Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request



Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request



Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire



Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire



Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request



Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request



Multiple mutexes

• Our program deadlocked! What happened?

IRS

UCSC

mutexP request

mutexB request

mutexP acquire

mutexB acquire

mutexB request

mutexP request

IRS has the personal mutex and won’t release it until it acquires the business mutex.
UCSC has the business mutex and won’t release it until it acquires the personal mutex.

This is called a deadlock!



Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 1 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur



Multiple mutexes

• Our program deadlocked! What happened?

• Fix: Acquire mutexes in the same order

• Proof sketch by contradiction
• Thread 0 is holding mutex X waiting for mutex Y
• Thread 1 is holding mutex Y waiting for mutex X

Assume the order that you acquire mutexes is X then Y
Thread 1 cannot hold mutex Y without holding mutex X.
Thread 1 cannot hold mutex X because thread 0 is holding mutex X
Thus the deadlock cannot occur

Double check with testing



Introducing mutual exclusion

Today isn’t about performance, but try to keep mutual exclusion 
sections small!

Code example with overhead



Programming with mutexes is HARD!

make sure all data conflicts are protected with a mutex

keep critical sections small

balance between having many mutexes (provides performance) but 
gives the potential for deadlocks

We haven’t even talked about implementations!



Atomic RMWs

Other ways to implement accounts?

Atomic Read-modify-write (RMWs): primitive instructions that 
implement a read event, modify event, and write event indivisibly, i.e. it 
cannot be interleaved.

atomic_fetch_add(atomic_int * addr, int value) {
int tmp = *addr; // read
tmp += value;    // modify
*addr = tmp;     // write

}

other operations: max, min, etc.



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time



Tyler’s coffee addiction:

m.lock();
tylers_account -= 1;
m.unlock();

Tyler’s employer

m.lock();
tylers_account += 1;
m.unlock();

Modify these programs to use atomic RMWs

time
time



Tyler’s coffee addiction:

tylers_account -= 1;

Tyler’s employer

tylers_account += 1;

Modify these programs to use atomic RMWs

time
time



Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time



Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);



Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Two indivisible events. 
Either the coffee or the employer comes first
either way, account is 0 afterwards.



Tyler’s coffee addiction:

atomic_fetch_add(&tylers_account, -1);

Tyler’s employer

atomic_fetch_add(&tylers_account, 1);

Modify these programs to use atomic RMWs

time
time

atomic_fetch_add(&tylers_account, -1);

atomic_fetch_add(&tylers_account, 1);

Code example



Atomic RMWs

Pros? Cons?



Atomic RMWs

Pros? Cons?

Not all architectures support RMWs (although more common with 
C++11)

Limits critical section (what if account needs additional updating?)

atomic types need to propagate through the entire application



Finish

• Next two classes: Implementing mutexes
• Reasoning about correctness
• Reasoning about fairness
• Reasoning about performance

• Final class in module:
• specialized mutexes


