
CSE113: Parallel Programming
April 1, 2021

• Topic: Architecture and Compiler Overview
• Programming Language to ISA compilation
• 3-address code
• multiprocessors
• memory hierarchy

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

LLC cache

DRAM

Lecture Schedule

• Overview - why do we need a lecture on compilation and
architecture?

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example

Lecture Schedule

• Overview - why do we need a lecture on compilation and
architecture?

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example

In a perfect world...

• Programming languages provide an abstraction

Programmer: Writes Code

Hardware Designer: Makes Chips

In a perfect world...

• Programming languages provide an abstraction Separation of concerns allows
incredible progress

modern compiler:
~15 million lines of code

(gcc)

modern chip:
~16 billion transistors

(Apple M1)

Programmer: Writes Code

Hardware Designer: Makes Chips

In a perfect world...

• Programming languages provide an abstraction

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

Programmer: Writes Code

Hardware Designer: Makes Chips

In a perfect world...

• Historically this worked well

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well

700 MHz
2003

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles

every 1.5 years.

700 MHz
2003

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles

every 1.5 years.

700 MHz 2.1 GHz
2003 2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles

every 1.5 years.

700 MHz 2.1 GHz
2003 20073x increase

over 4 years
The negotiators:
Specifications
Compiles
Runtimes
Interpreters

In a perfect world...

• Historically this worked well • Programming languages
also evolved:
• Garbage Collection
• Memory Safety
• Runtimes

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.1 GHz
2007

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.5 GHz
2017

2.1 GHz
2007

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.5 GHz
20171.2x increase

over 10 years2.1 GHz
2007

However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.1 GHz
2007

2.5 GHz
20171.2x increase

over 10 years

2 cores 4 cores

Reexamining the stack

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

Optimized and designed over decades for
single core.

Parallel programming breaks down these abstractions

Performance - memory contention
Safety - how to reason about shared data

Reexamining the stack

• Nowadays

To efficiently program
parallel architectures,
developers looking past the
negotiators and more directly at
hardware

Reexamining the stack

• Nowadays Pick a language that allows you to reason about
how your language is executed on the hardware

Reexamining the stack

• Nowadays
Heavy runtime, JIT

Reexamining the stack

• Nowadays
often intuitive mappings to assembly

lean runtime

Modern trends

This is not just me being a dinosaur

Not bad for a language that came out in 1978!

Reasons for C’s popularity

• There have always been reasons to program close to the hardware
• Embedded systems
• parallelism
• diversity of architecture (especially recently)

• C/++ has a massive ecosystem, large and active community. It can
keep up with hardware trends and allows extremely efficient code to
be written while keeping a manageable level of abstraction

C/++ is not perfect

• Downsides: Security issues, bugs, pointers, complicated specification

• designing a fast, and safe programming language is difficult. Very much
an open problem. Many of you may be working on it in your career.

• Rust seems like an interesting development. Not yet to the place where I
see it being viable to teach.
• currently ranked 27
• Overhead of learning a new language and parallelism...

Python?

• Great language for scripting
• We will use it to automate experiments in this class

• The GIL (global interpreter lock) restricts parallelism significantly.
• makes the language safe

• TensorFlow and Pytorch?
• wrappers around low-level kernels that execute outside of the python interpreter

Lecture Schedule

• Overview - why do we need a lecture on compilation and
architecture?

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example

Compilation:
Language ISA

Compilation:
Language ISA

int add(int a, int b) {
return a + b;

}

Compilation:
Language ISA

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

Compilation:
Language ISA

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

official specification
Intel provides a specification: free
2200 pages

Compilation:
Language ISA

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

official specification
Intel provides a specification: free
2200 pages

???

Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

official specification
Intel provides a specification: free
2200 pages

add(int, int): # @add(int, int)
push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], edi
mov dword ptr [rbp - 8], esi
mov eax, dword ptr [rbp - 4]
add eax, dword ptr [rbp - 8]
pop rbp
ret

Language

Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

add(int, int):
sub sp, sp, #16
str w0, [sp, #12]
str w1, [sp, #8]
ldr w8, [sp, #12]
ldr w9, [sp, #8]
add w0, w8, w9
add sp, sp, #16
ret

Language

How about a more complicated program?
Quadratic formula

How about a more complicated program?
Quadratic formula

How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

official specification
Intel provides a specification: free
2200 pages

There is not an ISA instruction that combines all these instructions!

A compiler will turn this into an
abstract syntax tree (AST)

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Simplify this code:

post-order traversal, using temporary
variables

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;

Simplify this code:

post-order traversal, using temporary
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

• This is not exactly an ISA
• unlimited registers
• not always a 1-1 mapping of

instructions.

• but it is much easier to translate to
the ISA

• We call this an intermediate
representation, or IR

• Examples of IR: LLVM, SPIR-V

C program llvm IR

Memory accesses

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Unless explicitly expressed in the programming language, loads and stores are
split into multiple instructions!

Zoom out

• This can be a lot if you don’t have a compiler background; don’t feel
overwhelmed!

• To be successful in this class, you don’t need to be an expert on
compilation, ISAs, or IRs.

• The important thing is to have a mental model of how your complex
code is broken down into instructions that are executed on hardware,
especially loads and stores

Lecture Schedule

• Overview - why do we need a lecture on compilation and
architecture?

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example

Architecture visual

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Core

C0

A core executes a stream
of sequential ISA instructions

A good mental model executes
1 ISA instruction per cycle

3 Ghz means 3B cycles per second
1 ISA instruction takes .33 ns

Core

Compiled function #0

Thread 0

Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

The OS can preempt a thread
(remove it from the hardware resource)

X

Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #1 Compiled function #0

Thread 1 Thread 2

And place another thread to execute

This is called concurrency:
multiple threads taking turns
executing on the same hardware
resource

Core

C0

Preemption can occur:
• when a thread executes

a long latency instruction

• periodically from the OS to
provide fairness

• explicitly using sleep
instructions

Core

Compiled function #1 Compiled function #0

Thread 1 Thread 2

And place another thread to execute

Multicores

C0

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

C1

Core

Threads can execute simultaneously.

This is also concurrency. But the
simultaneously called parallelism.

parallelism implies concurrency, but
not the other way around.

Multicores

C0

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

C1

Core

This is fine if threads are independent:
e.g. running Chrome and Spotify at the
same time.

If threads need to cooperate to run
the program, then they need to communicate
through memory

Main memory

C1 C2 C3C0

DRAM

store(a0,128)

a0:? a1:? ... an:?

Main memory

C1 C2 C3C0

DRAM

store(a0,128)

a0:128 a1:? ... an:?

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:?

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:128

Problem solved!
Threads can communicate!

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:128

reading a value takes ~200 cycles

Problem solved!
Threads can communicate!

Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:128

Bad for parallelism, even worse
for sequential programs

reading a value takes ~200 cycles

Problem solved!
Threads can communicate!

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

int x = 0;
for (int i = 0; i < 100; i++) {

increment(&x);
}

Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

int x = 0;
for (int i = 0; i < 100; i++) {

increment(&x);
}

40100 cycles!

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

latency
~10 cycles

L2
cache

L2
cache

L2
cache

L2
cache

2048 KB

Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs
(or even TBs)

L1
cache

L1
cache

L1
cache

L1
cache

latency
~4 cycles

256 KB

latency
~10 cycles

L2
cache

L2
cache

L2
cache

L2
cache

2048 KB

LLC cachelatency
~40 cycles 12 MB

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles

Assuming the value is in the cache!

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

4 cycles

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

4 cycles

9 cycles!

Cache organization

• Cache line size for x86: 64 bytes:
• 64 chars
• 32 shorts
• 16 float or int
• 8 double or long
• 4 long long

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache

a[0] - a[15]

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
a[0]++;
a[15]++;
a[16]++;

}

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
a[0]++;
a[15]++;
a[16]++;

}

a[0] - a[15]

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
a[0]++;
a[15]++;
a[16]++;

}

a[0] - a[15]

will be a hit because we’ve loaded a[0] cache line

Caches
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *a) {
a[0]++;
a[15]++;
a[16]++;

}

Assume a[0] is not in the cache

a[0] - a[15]

Miss

a[16] - a[31]

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache

a[0] - a[15]

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache

This loads a[8]
a[0] - a[15]

Cache alignment
C0

L1
cache

LLC cache

DRAM

L2
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache

a[0] - a[15]

a[16] - a[31]

This loads a[8]
This loads a[23], a miss!

Cache alignment

• Malloc typically returns a pointer with “good” alignment.
• System specific, but will be aligned at least to a cache line, more likely a page

• For very low-level programming you can use special aligned malloc
functions

• Prefetchers will also help for many applications (e.g. streaming)

Cache alignment

• Malloc typically returns a pointer with “good” alignment.
• System specific, but will be aligned at least to a cache line, more likely a page

• For very low-level programming you can use special aligned malloc
functions

• Prefetchers will also help for many applications (e.g. streaming)

for (int i = 0; i < 100; i++) {
a[i] += b[i];

}

prefetcher will start collecting consecutive data in the cache if
it detects patterns like this.

Next lecture

• Cache associativity
• Cache coherence
• False Sharing

