
CSE113: Parallel Programming
April 1, 2021

• Topic: Architecture and Compiler Overview
• Programming Language to ISA compilation
• 3-address code
• multiprocessors
• memory hierarchy
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Lecture Schedule

• Overview - why do we need a lecture on compilation and 
architecture? 

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example
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In a perfect world...

• Programming languages provide an abstraction

Programmer: Writes Code

Hardware Designer: Makes Chips



In a perfect world...

• Programming languages provide an abstraction Separation of concerns allows 
incredible progress

modern compiler:
~15 million lines of code

(gcc)

modern chip:
~16 billion transistors

(Apple M1)

Programmer: Writes Code

Hardware Designer: Makes Chips
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In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles 

every 1.5 years.
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In a perfect world...

• Historically this worked well
• Dennard’s scaling:
• Computer speed doubles 

every 1.5 years.

700 MHz 2.1 GHz
2003 20073x increase

over 4 years
The negotiators:
Specifications
Compiles
Runtimes
Interpreters



In a perfect world...

• Historically this worked well • Programming languages 
also evolved:
• Garbage Collection
• Memory Safety
• Runtimes

The negotiators:
Specifications
Compiles
Runtimes
Interpreters



However...
These trends slowed down in ~2007
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However...
These trends slowed down in ~2007

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

2.1 GHz
2007

2.5 GHz
20171.2x increase

over 10 years

2 cores 4 cores



Reexamining the stack

The negotiators:
Specifications
Compiles
Runtimes
Interpreters

Optimized and designed over decades for 
single core.

Parallel programming breaks down these abstractions

Performance - memory contention
Safety - how to reason about shared data



Reexamining the stack

• Nowadays

To efficiently program 
parallel architectures,
developers looking past the
negotiators and more directly at
hardware



Reexamining the stack

• Nowadays Pick a language that allows you to reason about
how your language is executed on the hardware



Reexamining the stack

• Nowadays
Heavy runtime, JIT



Reexamining the stack

• Nowadays
often intuitive mappings to assembly

lean runtime



Modern trends



This is not just me being a dinosaur



Not bad for a language that came out in 1978!



Reasons for C’s popularity

• There have always been reasons to program close to the hardware
• Embedded systems
• parallelism
• diversity of architecture (especially recently)

• C/++ has a massive ecosystem, large and active community. It can 
keep up with hardware trends and allows extremely efficient code to 
be written while keeping a manageable level of abstraction



C/++ is not perfect

• Downsides: Security issues, bugs, pointers, complicated specification

• designing a fast, and safe programming language is difficult. Very much 
an open problem. Many of you may be working on it in your career.

• Rust seems like an interesting development. Not yet to the place where I 
see it being viable to teach. 
• currently ranked 27
• Overhead of learning a new language and parallelism...



Python?

• Great language for scripting
• We will use it to automate experiments in this class

• The GIL (global interpreter lock) restricts parallelism significantly. 
• makes the language safe

• TensorFlow and Pytorch?
• wrappers around low-level kernels that execute outside of the python interpreter 



Lecture Schedule

• Overview - why do we need a lecture on compilation and 
architecture? 

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example
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Compilation:
Language ISA

int add(int a, int b) {
return a + b; 

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

official specification
Intel provides a specification: free
2200 pages

???



Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

official specification
Intel provides a specification: free
2200 pages

add(int, int): # @add(int, int)
push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], edi
mov dword ptr [rbp - 8], esi
mov eax, dword ptr [rbp - 4]
add eax, dword ptr [rbp - 8]
pop rbp
ret

Language



Compilation:

int add(int a, int b) {
return a + b;

}

Officially defined by the specification
ISO standard: costs $200
~1400 pages

add(int, int):
sub sp, sp, #16
str w0, [sp, #12]
str w1, [sp, #8]
ldr w8, [sp, #12]
ldr w9, [sp, #8]
add w0, w8, w9
add sp, sp, #16
ret

Language



How about a more complicated program?
Quadratic formula



How about a more complicated program?
Quadratic formula



How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)



How about a more complicated program?
Quadratic formula

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

official specification
Intel provides a specification: free
2200 pages

There is not an ISA instruction that combines all these instructions!



A compiler will turn this into an 
abstract syntax tree (AST)

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)



Simplify this code:

post-order traversal, using temporary 
variables
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Simplify this code:

post-order traversal, using temporary 
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;



Simplify this code:

post-order traversal, using temporary 
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;



Simplify this code:

post-order traversal, using temporary 
variables

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x  = r8;

• This is not exactly an ISA 
• unlimited registers 
• not always a 1-1 mapping of 

instructions.

• but it is much easier to translate to 
the ISA

• We call this an intermediate 
representation, or IR

• Examples of IR: LLVM, SPIR-V



C program llvm IR



Memory accesses

int increment(int *a) {
a[0]++;

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Unless explicitly expressed in the programming language, loads and stores are 
split into multiple instructions!



Zoom out

• This can be a lot if you don’t have a compiler background; don’t feel 
overwhelmed!

• To be successful in this class, you don’t need to be an expert on 
compilation, ISAs, or IRs. 

• The important thing is to have a mental model of how your complex 
code is broken down into instructions that are executed on hardware, 
especially loads and stores



Lecture Schedule

• Overview - why do we need a lecture on compilation and 
architecture? 

• Compilation - How do we translate a program from a human-
accessible language to a language that the processor understands

• Architecture - How do processors execute programs?

• Example



Architecture visual
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Core

C0

A core executes a stream
of sequential ISA instructions

A good mental model executes
1 ISA instruction per cycle

3 Ghz means 3B cycles per second
1 ISA instruction takes .33 ns

Core

Compiled function #0

Thread 0



Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1



Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

The OS can preempt a thread
(remove it from the hardware resource)

X



Core

C0

Sometimes multiple
programs want to share
the same core.

Core

Compiled function #1 Compiled function #0

Thread 1 Thread 2

And place another thread to execute

This is called concurrency:
multiple threads taking turns
executing on the same hardware
resource



Core

C0

Preemption can occur:
• when a thread executes

a long latency instruction

• periodically from the OS to
provide fairness

• explicitly using sleep 
instructions

Core

Compiled function #1 Compiled function #0

Thread 1 Thread 2

And place another thread to execute



Multicores

C0

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

C1

Core

Threads can execute simultaneously.

This is also concurrency. But the 
simultaneously called parallelism.

parallelism implies concurrency, but
not the other way around.



Multicores

C0

Core

Compiled function #0 Compiled function #1

Thread 0 Thread 1

C1

Core

This is fine if threads are independent:
e.g. running Chrome and Spotify at the
same time.

If threads need to cooperate to run 
the program, then they need to communicate
through memory



Main memory

C1 C2 C3C0

DRAM

store(a0,128)

a0:? a1:? ... an:?
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Main memory
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Main memory
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Main memory

C1 C2 C3C0

DRAM

r0 = load(a0)

a0:128 a1:? ... an:?

r0:128

Bad for parallelism, even worse
for sequential programs

reading a value takes ~200 cycles

Problem solved! 
Threads can communicate!



Main memory
int increment(int *a) {

a[0]++;
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM



Main memory
int increment(int *a) {
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}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles
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Main memory
int increment(int *a) {

a[0]++; 
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

int x = 0; 
for (int i = 0; i < 100; i++) { 

increment(&x); 
}



Main memory
int increment(int *a) {

a[0]++; 
}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

C0

DRAM

200 cycles

1 cycles

200 cycles

401 cycles

int x = 0; 
for (int i = 0; i < 100; i++) { 

increment(&x); 
}

40100 cycles!
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Caches
C1 C2 C3C0

DRAMlatency
~200 cycles

Many GBs 
(or even TBs)

L1 
cache

L1 
cache

L1 
cache

L1 
cache

latency
~4 cycles

256 KB

latency
~10 cycles

L2 
cache

L2 
cache

L2 
cache

L2 
cache

2048 KB

LLC cachelatency
~40 cycles 12 MB
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int increment(int *a) {
a[0]++; 

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4
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int increment(int *a) {
a[0]++; 

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles

Assuming the value is in the cache!
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int increment(int *a) {
a[0]++; 

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4
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Caches
C0

L1 
cache

LLC cache

DRAM

L2 
cache

int increment(int *a) {
a[0]++; 

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

4 cycles
1 cycles

4 cycles

9 cycles!



Cache organization

• Cache line size for x86: 64 bytes:
• 64 chars
• 32 shorts
• 16 float or int
• 8 double or long
• 4 long long
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int increment(int *a) {
a[0]++; 

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache



Caches
C0

L1 
cache

LLC cache

DRAM

L2 
cache

int increment(int *a) {
a[0]++; 

}

%5 = load i32, i32* %4
%6 = add nsw i32 %5, 1
store i32 %6, i32* %4

Assume a[0] is not in the cache

a[0] - a[15]
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int increment_several(int *a) {
a[0]++;
a[15]++;
a[16]++;

}
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Caches
C0

L1 
cache

LLC cache

DRAM

L2 
cache

int increment_several(int *a) {
a[0]++;
a[15]++;
a[16]++;

}

a[0] - a[15]

will be a hit because we’ve loaded a[0] cache line



Caches
C0

L1 
cache

LLC cache

DRAM

L2 
cache

int increment_several(int *a) {
a[0]++;
a[15]++;
a[16]++;

}

Assume a[0] is not in the cache

a[0] - a[15]

Miss

a[16] - a[31]



Cache alignment
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DRAM

L2 
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache
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Cache alignment
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L1 
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L2 
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache

This loads a[8]
a[0] - a[15]



Cache alignment
C0

L1 
cache

LLC cache

DRAM

L2 
cache

int increment_several(int *b) {
b[0]++;
b[15]++;

}

int foo(int *a) {
increment_several(a[8])

}

Assume a[0] is not in the cache

a[0] - a[15]

a[16] - a[31]

This loads a[8]
This loads a[23], a miss!



Cache alignment

• Malloc typically returns a pointer with “good” alignment.
• System specific, but will be aligned at least to a cache line, more likely a page

• For very low-level programming you can use special aligned malloc 
functions

• Prefetchers will also help for many applications (e.g. streaming)



Cache alignment

• Malloc typically returns a pointer with “good” alignment.
• System specific, but will be aligned at least to a cache line, more likely a page

• For very low-level programming you can use special aligned malloc 
functions

• Prefetchers will also help for many applications (e.g. streaming)

for (int i = 0; i < 100; i++) { 
a[i] += b[i]; 

}

prefetcher will start collecting consecutive data in the cache if
it detects patterns like this.



Next lecture

• Cache associativity 
• Cache coherence
• False Sharing


