CSE113: Parallel Programming

Homework 1: Instruction Level Parallelism and C++ Threads
Assigned: April 8, 2021
Due: April 22, 2021

Preliminaries

1.

This assignment requires the following programs: make, bash, python3, and clang++. This
software should all be available on the provided docker.

. Review the April 8 lecture: it should contain a most of the required background. Material

from earlier lectures will also be useful.

. Find the assignment packet at https://sorensenucsc.github.io/CSE113-2021/homeworks/

homeworkl_packet.zip. You might collect this from a a bash cli using wget. That is, you
can run:

wget https://sorensenucsc.github.io/CSE113-2021/homeworks/homeworkl_packet.zip
Download the packet and unzip it. But do not change the file structure.

This homework contains 3 parts. Each part is worth equal points.

. For each part, read the what to submit section. Add any additional content to the file structure.

To submit, you will zip up your modified packet and submit it to canvas. If you have questions
about the structure of your zip file, please ask!

. It is okay to discuss docker questions and file structure questions with your classmates, or in

canvas discussions.

1 Loop Unrolling Independent Iterations for ILP

Here we will consider for loops with independent iterations. However, each iteration will contain
a chain of dependent instruction. This chain is intended to impede the processor’s ability to utilize
ILP, either through pipelining or superscalar components. The length of dependent instruction
chains is a parameter of the program. Your assignment is to unroll the loops, first doing each
iteration sequentially, and then interleaving the instructions from different iterations. Interleaving
instructions should allow the processor to exploit more ILP, which should appear in timing ex-
periments. You will measure the execution time of various dependent chain lengths and unrolling
factors.

This assignment is based on a C++ loop structure, parameterized by a dependency chain length
N, that looks like this:


https://sorensenucsc.github.io/CSE113-2021/homeworks/homework1_packet.zip
https://sorensenucsc.github.io/CSE113-2021/homeworks/homework1_packet.zip

void loop(float *a, int size) {
for (int i = 0; i < size; i++) {
float tmp = alil;

tmp += 1.0f;

tmp += 2.0f;

tmp += 3.0f;

// and many more
tmp += N;

alil = tmp;

A few things to note about this loop: the dependency chain cannot be re-ordered or statically
pre-computed in the compiler because floating point operations must be done in order (i.e. they are
non-associative). So the compiler must must produce an ISA instruction for each of the addition
operations. The code will generate as many addition operations as specified by the chain length N.

I will provide a skeleton python code that performs the following:

1. it generates the reference loop
2. it generates unfinished function outlines for the functions you need to implement

3. it puts these functions in a C++ wrapper that will print timing information about the exe-
cution of the functions.

4. it compiles the code
5. it runs the code

The python script takes two command line args, the length of the dependency chain and the
unroll factor. Run with -h to view the argument specification. You can view the generated C++
file in homework. cpp (it will change each time you run the python script). You can specify various
chain lengths to see how the reference loop changes. The unroll factor currently does nothing
because that is your job to implement. Initially, your C++ code will compile and run, but it will
not be correct, as the two loops that you are supposed to implement contain empty bodies. Once
you implement the functions, the C++ code will report the speedups that unrolled loops provide.

1.1 Technical notes

e The coding aspect of this assignment is constrained entirely to skeleton.py. In fact, every-
thing except optional testing is contained to two python functions in skeleton.py: The first
one starts at line 43. The second one starts at line 75. There are long comments for each
function with additional instructions.

¢ Read through the entire skeleton code to understand the structure. The python code is writing
a C++ file that is then compiled with clang++ and executed. The C++ file will time your
implementation loop against a reference.

e You can assume that the size is always a power of 2, and so is the unroll factor. That is, you
do not need to implement ”clean” up iterations.



¢ Remember that floating point constants need a f character, otherwise they will be considered
double type, which will mess up your timings! For example, the floating point of 2 is 2.0f

e For your submission, you are not allowed to change the clang++ compile line, the reference
loop, or the main string. I would advise you to add extra code to test your implementations.

o Feel free to play around with the compiler flags on your end if you are so motivated. You will
quickly find at higher optimization levels, the compiler will do this unrolling and interleaving
for you.

1.2 What to Submit

You will submit a completed skeleton file. I suggest you run it with a variety of arguments and
incorporate some tests into the generated C+4 code to build confidence in your solution. Please
keep the name of your skeleton file the same as the name in the original download. We will remove
points for renamed files.

Part of your submission will be some experimental timings. Run your program with dependency
chain length of 64, and then with unroll factors of length 1, 2, 4, 8, 16, 64. Present your results as
a line graph where the unroll factor is the x axis and the speedup of your two loops (relative to the
reference) is the y axis. Write 2 paragraphs about your results and how they related to what we
have been learning. Place a PDF containing your graph and write-up in the same directory as the
skeleton code.

Your grade will be based on 4 criteria:

e Correctness: do your functions compute the right result. If not, we cannot grade the rest of
the code.

¢ Conceptual: do your functions actually unroll and interleave instructions. Please comment
your code.

e Performance: do your performance results match roughly what they should.

o Explanation: do you explain your results accurately based on our lectures.

2 Unrolling Reduction Loops for ILP

Part 2 is identical to part 1, except we are targeting a different type of for loop. Here we are
targeting reduction loops, where each iteration depends on the previous one. Recall in class, we
showed that these loops can be unrolled to exploit ILP. You should apply a ”chunking” unroll
style, i.e. how we described in lecture. That is, the input array should be divided into N equal
sized chunks (where N is the unrolling factor). Each loop iteration can then execute N reduction
commands. At the end of the function, there needs to be a loop adding up the totals for each N.

There is only one parameter in this part, the unroll factor. Your timing results can be displayed
as a line graphs where the x axis is the unroll factor (or partitions in the code), and the y axis is
the speedup relative to the reference. You only have to go up to an unrolling factor of size 16 in
this part (you will see why).

Again you can assume the size and unroll factor is always a power of 2.

All other aspects of this part can are the same as part 1.



2.1 What to Submit

This is the same as in Part 1.

3 SPMD Parallel Programming Using C++4 Threads

Here you will get some experience writing parallel code using C++ threads. Unlike the previous
two parts, you will create this code from scratch. However, it must compile with the Makefile 1
provided.

Your file will be called homeworkl_part3.cpp.

Your job is to create a 3 integer arrays of size 1024. Call them a, b, c and d. You should initialize
every element of each array to 0.

Your job is to store the value 1048576 (lets call it K) in each element of each array, but there
is a catch. You can only use the increment operator (i.e. ++). Furthermore, each loop must be
operated on differently. I suggest you write a function for each task. Use the volatile keyword
in the function argument list so that all all of your memory operations actually access a memory
location. You should be able to tell from your timing results if your operations are being optimized
by the compiler.

1. For array a, you must do this computation sequentially.

2. For array b, you must do this computation in parallel by writing an SMPD style function.
You must access elements in a round-robin style. That is, a thread with thread id of ¢id must
compute the elements at index 7 where

i%NUM_THREADS = tid

a thread must complete all increment operations on a location before moving on to the next
location. It must operate on its location in order.

3. For array ¢, you must do this computation in parallel by writing an SMPD style loop, however
you can partition data to the threads in any way you’d like. Think about how you can do
this in a more efficient way than what is done for array b.

You should time each function. You can use the chrono library similar to the C++ timing code
in part 1. Print out the speedups of:

e the computation of a related to b
e the computation of a related to ¢

e the computation of b related to ¢

4 What to Submit

Similar to the previous two problems, part of your submission will be some timing experiments.
Please run your code with 1,2,4,8 threads. Provide a line graph illustrating your results. The X
axis is threads and the Y axis is the speedup relative to the computation of a. Please provide one



paragraph describing your strategy for computing array ¢ and then two paragraphs describing your
results. If you do not have 8 cores, you may not see speedups up to eight threads. That is fine;
just say so in your description. Also, you may need to increase the size of K to get meaningful
performance results. You should try to select a size on your machine where the computation of a
takes around 1 second. Please include this number in your report.
You can modify the Makefile, but it should be able to compile your C++ file on your machine.
There should be 3 files in this directory:

e The C++ file

e The Makefile

e A PDF of your report.

Your grade will be based on 4 criteria:

e Correctness: do your functions compute the right result. If not, we cannot grade the rest of
the code.

e Conceptual: do your functions actually implement the SPMD programming model? is array
b computed under the right constraints.

o Performance: do your performance results match roughly what they should? Could you
identify ways to improve the performance of array ¢ compared to b?

o Explanation: do you explain your results accurately based on our lectures.



	Loop Unrolling Independent Iterations for ILP
	Technical notes
	What to Submit

	Unrolling Reduction Loops for ILP
	What to Submit

	SPMD Parallel Programming Using C++ Threads
	What to Submit

