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Even Bob the Builder, is
confused about where to start
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We need a modern compiler!



Motivation?

 Introduction to LLVM









LLVM

Low Level Virtual Machine



DEVELOPERS" MEETING

EURO LLVM



EURO LLVM

DEVELOPERS’ MEETING SAN JOSE, CALIFORNIA « HAYES MANSION




)
i

)

< b

3

(e
(=

{1

f

‘\
A
A Q
)
B
7/

Al
7

=)

DEVELOPERS" MEETING

EVRO LAY

DEVELOPERS’ MEETING



z \
Y

4'..5 /‘NF "‘%r«\ ‘p*l

pEVELOPERS’ MEETING - (BAJRE LAY

DEVELOPERS’ MEETING



DEVELOPERS’ MEETING @U.. LAY

DEVELOPERS’ MEETING

DEVELOPERS MEETING

OCTOBER 6-8




H

W

N
<

‘§

=7
A
[~ (1

vi

V%f'ﬁ

Bl

DEVELOPERS’ MEETING

L r;' »
DEVELOPERS MEETING
OCTOBER 6-8




5 “J MLU%

DEVELOPERS’ MEETING

dLLYMDEYS I
v

DEVELOPERS MEETING
OCTOBER 6-8 DEVELOPERS' MEETING




Picture credits: Bob the Builder



Motivation?

 Introduction to LLVM What happens inside
the front end?

 Lexical Analysis

Program

C++ code




LLVM

e Lexical Analysis (tokenization or scanning)

* [t breaks the source code into individual tokens, such as identifiers,
keywords, literals, and operators.

 Example of lexical analysis for a simple arithmetic expression:
"5+ 3 * (7 - 2)"
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LLVM

e Syntax Analysis

* |t builds the abstract syntax tree (AST) from the tokens.
* AST represents the hierarchical structure of the source code.

* Capturing the relationships between different
elements and their corresponding expressions,
statements, and declarations.
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LLVM

« Semantic Analysis

 Semantic analysis ensures the program is well-formed and meaningful
according to the language's rules and specifications.

* |t helps catch errors and inconsistencies that may not be detected
during lexical and syntax analysis alone.
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« LLVM IR generation.

#include <iostream=

int main() {
int X 5:
int vy 10;

int z X + V;

return 0;




LLVM

« LLVM IR generation.

; Function Attrs: mustprogress noinline norecurse nounwind optnone uwtable
define dso local noundef 132 @main() #4 {

%1 = alloca 132, align 4

%2 = alloca 132, align 4

%3 = alloca 132, align 4

%4 = alloca 132, align 4

store 132 0, 132* %1, align 4

store 132 5, 132* %2, align 4
store i32 10, 1i32* %3, align 4
%5 = load 132, 132* %2, align 4
%5 = load 132, 132* %3, align 4
%7 = add nsw 132 %5, %6

store 132 %7, 132* %4, align 4
ret 132 o
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 Optional Optimizations

 Constant folding - simplifies expressions involving constants and
replaces them with their computed values.

; Function Attrs: mustprogress noinline norecurse nounwind optnone uwtable
define dso local noundef 132 @main() #4 {

%1 alloca 132, align 4

%2 alloca 132, align 4

%3 alloca 132, align 4

%4 alloca 132, align 4

store 132 0, 132* %1, align 4

store 132 5, 132* %2, align 4
store i32 10, i32* %3, align 4
%5 = load 132, 132* %2, align 4
%5 = load 132, 132* %3, align 4
%7 add nsw 132 %5, %6

store 132 %7, 132* %4, align 4
ret 132 o




LLVM

 Optional Optimizations

 Constant folding - simplifies expressions involving constants and
replaces them with their computed values.

; Function Attrs: mustprogress noinline norecurse nounwind optnone uwtable
define dso local noundef 132 @main() #4 {

%1 alloca 132, align 4

%2 alloca 132, align 4

%3 alloca 132, align 4

%4 = alloca 132, align 4

store i32 0, i32* %1, align 4

store i32 5, i132* %2, align 4
store i32 10, i32* %3, align 4
%7 = add nsw 132 5, 10

store 132 %7, 132* %4, align 4
ret 132 0
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 Warnings and errors.

#include <iostream=

int main() {
int X 5;
int y 10;

int z = x * y; // Warning: Unused variable

return @; J/ Error: Missing semicolon
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 Warnings and errors.

program.cpp:7:9: warning: unused variable 'z' [-Wunused-variable]
int z = x * y; J/ Warning: Unused variable
M

1 warning generated.

program.cpp:9:13: error: expected ':' after return statement

return @ f/ Error: Missing semicolon
M

a
>

1 error generated.
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 Data Flow Analysis (DFA)

#include <iostream=

int main() {
int x
int y
int z;

if (x = y) {

Z =X+ V;
} else {

L =X - Y,
3

return 0;
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LLVM

 Data Flow Analysis (DFA)

#include <iostream=

int main() {

X>Y X<Y

if (x = y) {
Z =X+ Yy;

} else { Z=X+Y Z=X-Y
Z =X - V;

3

PEENrn return return
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e |Is there a dead code?

#include <iostream=

int main() {
't W .
int y = 5: X>Y X<Y

int z;

if (x = y) {

Z =X+ V;

} else { Z=X+Y Z=X-Y
Z =X - V;

3

PEENrn return return
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e Yes!

#include <iostream=

int main() {
int X

int y = 55 X>Y X<Y

int z;

iF (x>y){
Z =X+ V;

} else { Z=X+Y Z=X-Y

Z =X - y;

3

PEENrn return return
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* Optimization ordering

 The reason behind ordering?
 What if there is a functionality change?

 Transformation and Analysis passes.
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CPUY
Program Front Middle Back CPU Z
C++ code end end end
LLVM IR LLVM IR
CPUC

CPUV
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 Instruction Selection

 DAG (Directed Acyclic Graph)

* DAG (Directed Acyclic Graph) - It captures the dependencies
and operations of the program as nodes and edges in a
directed graph. Each node in the DAG represents an operation
or value, and the edges represent the data flow between them.

 Overall, DAG-based instruction selection in LLVM's backend is
crucial in mapping high-level IR to target-specific machine
code, enabling efficient and optimized code generation for a
wide range of target architectures.
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 Instruction Selection

 Global ISEL (Global Instruction Selection)

It aims to improve instruction selection by performing the selection process
across the entire function or module globally rather than on a per-basic-block
basis, as done in the DAG approach.

Improved Code Quality: By considering a broader context and optimizing
across the entire function or module.

Code Sharing: Global ISEL can identify opportunities for code sharing and
reuse across different basic blocks and paths, leading to reduced code size
and improved cache locality.

Simplified Code Generation: With Global ISEL, the instruction selection
process becomes more unified and cohesive since it operates globally.
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Instruction Scheduling

e The backend determines the order of instructions to be
executed to maximize the performance of the generated
code.

* Instruction scheduling considers factors such as instruction
dependencies, pipeline hazards, and the target
architecture's specific execution characteristics to minimize
stalls and improve instruction-level parallelism.
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 Register Allocation

* Virtual Register Allocation - virtual registers are initially
unlimited and can hold any value.

 This allows for efficient analysis and optimization
without the limitations of physical registers.

 Register Interference Analysis - determine which virtual
registers may conflict with each other.
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LLVM IR

 Register Allocation

e Code emission
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 Benefits of LLVM
 Modularity and Extensibility
 Portability
 Optimizations
 Justin time, execute the code on the fly
 Supported tools ( LLDB, GDB)

« Community and easier Adoption
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