
The Life and Adventures of LLVM

From Bytecode to the Executables

Rithik Sharma, PhD Student

Motivation?

Motivation?
• How does this talk align with the compiler class?

Motivation?
• How does this talk align with the compiler class?

Scanners

Motivation?
• How does this talk align with the compiler class?

Scanners

Parsers

Motivation?
• How does this talk align with the compiler class?

Scanners

Parsers

SSA/Three
address

code

Motivation?
• How does this talk align with the compiler class?

Scanners

Parsers

SSA/Three
address

code

Non- Ambiguous
grammars

Motivation?
• How does this talk align with the compiler class?

Scanners

Parsers

SSA/Three
address

code

Non- Ambiguous
grammars

Production
rules

Motivation?
• How does this talk align with the compiler class?

Scanners

Parsers

SSA/Three
address

code

Non- Ambiguous
grammars

Production
rules

Motivation?
• How does this talk align with the compiler class?

Techniques
used by

compilers

Motivation?
• How does this talk align with the compiler class?

Motivation?
• How does this talk align with the compiler class?

• What are some shortcomings of early compilers?

Motivation?
• What are some shortcomings of early compilers?

Motivation?
• What are some shortcomings of early compilers?

• Performance

Motivation?
• What are some shortcomings of early compilers?

• Performance

• Re-usability

Motivation?
• What are some shortcomings of early compilers?

• Performance

• Re-usability

• Optimizations

Motivation?
• What are some shortcomings of early compilers?

• Performance

• Re-usability

• Optimizations

• Correctness

Motivation?
• What are some shortcomings of early compilers?

• Performance

• Re-usability

• Optimizations

• Correctness

• Scaling

Motivation?
• What are some shortcomings of early compilers?

Picture credits: Bob the Builder

Even Bob the Builder, is
confused about where to start

Motivation?
• What are some shortcomings of early compilers?

Picture credits: Bob the Builder

We need a modern compiler!

Motivation?
• Introduction to LLVM

LLVM

LLVM

LLVM

Low Level Virtual Machine

Motivation?
• Introduction to LLVM

Picture credits: Bob the Builder

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

What happens inside
the front end?

• Lexical Analysis

LLVM
• Lexical Analysis (tokenization or scanning)

• It breaks the source code into individual tokens, such as identifiers,
keywords, literals, and operators.

• Example of lexical analysis for a simple arithmetic expression:  
"5 + 3 * (7 - 2)"

Token: Integer Value: 5
Token: Operator Value: +
Token: Integer Value: 3
Token: Operator Value: *
Token: Left Parenthesis
Value: (

Token: Integer Value: 7 
Token: Operator Value: -
Token: Integer Value: 2
Token: Right Parenthesis Value:)

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

What happens inside
the front end?

• Lexical Analysis

• Syntax Analysis

LLVM
• Syntax Analysis

• It builds the abstract syntax tree (AST) from the tokens.

• AST represents the hierarchical structure of the source code.

• Capturing the relationships between different 
elements and their corresponding expressions, 
statements, and declarations. 
 
expr -> term 
expr -> expr + term 
term -> factor 
term -> term * factor 
factor -> Integer 
factor -> (expr)

 expr
 / \

 term +
 / \ |

 factor term
 / \

 factor *
 |

 factor

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

What happens inside
the front end?

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

LLVM
• Semantic Analysis

• Semantic analysis ensures the program is well-formed and meaningful
according to the language's rules and specifications.

• It helps catch errors and inconsistencies that may not be detected
during lexical and syntax analysis alone.

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

What happens inside
the front end?

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• LLVM IR generation

LLVM
• LLVM IR generation.

C++ Code

y

LLVM
• LLVM IR generation.

#include <iostream> 
int main() {

int x = 5;
int y = 10;

 int z = x + y;

 return 0;
}

LLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

What happens inside
the front end?

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• LLVM IR generation

• Optional
Optimizations

LLVM
• Optional Optimizations

• Constant folding - simplifies expressions involving constants and
replaces them with their computed values.

LLVM
• Optional Optimizations

• Constant folding - simplifies expressions involving constants and
replaces them with their computed values.

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

What happens inside the
front end?

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• LLVM IR generation

• Optimizations

• Warnings and errors

LLVM
• Warnings and errors. 
 

LLVM
• Warnings and errors. 
 

 
 

Clang error and warnings

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

What happens inside the
middle end?

• Data Flow Analysis (DFA)

LLVM IR

LLVM
• Data Flow Analysis (DFA) 
 
 
 

C++ code

LLVM
• Data Flow Analysis (DFA) 
 
 
 

C++ code

Start

X = 10

X > Y

Z = X + Y

return

Z = X - Y

X < Y

return

LLVM
• Is there a dead code? 
 
 
 

C++ code

Start

X = 10

X > Y

Z = X + Y

return

Z = X - Y

X < Y

return

LLVM
• Yes!

C++ code

Start

X = 10 
Y = 5

X > Y

Z = X + Y

return

Z = X - Y

X < Y

return

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

What happens inside the
middle end?

• Data Flow Analysis (DFA)

• Control Flow Analysis
(CFA)

LLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

What happens inside the
middle end?

• Data Flow Analysis (DFA)

• Control Flow Analysis
(CFA)

• Alias Analysis (AA)
LLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

What happens inside the
middle end?

• Data Flow Analysis (DFA)

• Control Flow Analysis
(CFA)

• Alias Analysis (AA)

• Data Dependence 
Analysis (DDA)

LLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

What happens inside the
middle end?

• Optimizations

• Transformation passes

• Analysis passes
LLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

What happens inside the
middle end?

• Optimizations

• Optimization ordering

LLVM IR

LLVM
• Optimization ordering

• The reason behind ordering?

• What if there is a functionality change?

• Transformation and Analysis passes.

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

What happens inside the
middle end?

• Optimizations

• Optimization ordering

• Generating optimized
LLVM-IRLLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

Back 
end

LLVM IR LLVM IR

Motivation?
• Introduction to LLVM What happens inside the

back end?

• Target-Specific Code
Generation

Back 
end

Middle 
end

LLVM IR

Motivation?
• Target-Specific Code Generation

Program

C++ code

Front 
end

Middle 
end

Back 
end

LLVM IR LLVM IR

CPU X

CPU Y

CPU Z

CPU C

CPU V

Motivation?
• Introduction to LLVM What happens inside the

back end?

• Target-Specific Code
Generation

• Instruction SelectionBack 
end

Middle 
end

LLVM IR

Motivation?
• Instruction Selection

• Instruction Matching

• Cost analysis and pattern matching

• DAG (Directed Acyclic Graph)

Motivation?
• Instruction Selection

• DAG (Directed Acyclic Graph)

• DAG (Directed Acyclic Graph) - It captures the dependencies
and operations of the program as nodes and edges in a
directed graph. Each node in the DAG represents an operation
or value, and the edges represent the data flow between them.

• Overall, DAG-based instruction selection in LLVM's backend is
crucial in mapping high-level IR to target-specific machine
code, enabling efficient and optimized code generation for a
wide range of target architectures.

Motivation?
• Instruction Selection

• Global ISEL (Global Instruction Selection)

• It aims to improve instruction selection by performing the selection process
across the entire function or module globally rather than on a per-basic-block
basis, as done in the DAG approach.

• Improved Code Quality: By considering a broader context and optimizing
across the entire function or module.

• Code Sharing: Global ISEL can identify opportunities for code sharing and
reuse across different basic blocks and paths, leading to reduced code size
and improved cache locality.

• Simplified Code Generation: With Global ISEL, the instruction selection
process becomes more unified and cohesive since it operates globally.

Motivation?
• Introduction to LLVM What happens inside the

back end?

• Target-Specific Code
Generation

• Instruction Selection

• Instruction Scheduling

Back 
end

Middle 
end

LLVM IR

Motivation?
• Instruction Scheduling

• The backend determines the order of instructions to be
executed to maximize the performance of the generated
code.

• Instruction scheduling considers factors such as instruction
dependencies, pipeline hazards, and the target
architecture's specific execution characteristics to minimize
stalls and improve instruction-level parallelism.

Motivation?
• Introduction to LLVM What happens inside the

back end?

• Target-Specific Code
Generation

• Instruction Selection

• Instruction Scheduling

• Register Allocation

Back 
end

Middle 
end

LLVM IR

Motivation?
• Register Allocation

• Virtual Register Allocation - virtual registers are initially
unlimited and can hold any value.

• This allows for efficient analysis and optimization
without the limitations of physical registers.

• Register Interference Analysis - determine which virtual
registers may conflict with each other.

Motivation?
• Introduction to LLVM What happens inside the

back end?

• Target-Specific Code
Generation

• Instruction Selection

• Instruction Scheduling

• Register Allocation

• Code emission

Back 
end

Middle 
end

LLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

Back 
end

Machine 
code

LLVM IR LLVM IR

Motivation?
• Introduction to LLVM

Program

C++ code

Front 
end

Middle 
end

Back 
end

Machine 
code

LLVM IR LLVM IR

Program

Rust code

Program

Haskell
code

Motivation?
• Benefits of LLVM

• Modularity and Extensibility

Motivation?
• Benefits of LLVM

• Modularity and Extensibility

• Portability

Motivation?
• Benefits of LLVM

• Modularity and Extensibility

• Portability

• Optimizations

Motivation?
• Benefits of LLVM

• Modularity and Extensibility

• Portability

• Optimizations

• Just in time, execute the code on the fly

Motivation?
• Benefits of LLVM

• Modularity and Extensibility

• Portability

• Optimizations

• Just in time, execute the code on the fly

• Supported tools (LLDB, GDB)

Motivation?
• Benefits of LLVM

• Modularity and Extensibility

• Portability

• Optimizations

• Just in time, execute the code on the fly

• Supported tools (LLDB, GDB)

• Community and easier Adoption

Thank
you :)

