The Life and Adventures of LLVM

From Bytecode to the Executables

Rithik Sharma, PhD Student

Motivation?

Motivation?

« How does this talk align with the compiler class?

Motivation?

« How does this talk align with the compiler class?

£ Scanners &

Motivation?

« How does this talk align with the compiler class?

£ Scanners &

4 Parsers &

Motivation?

« How does this talk align with the compiler class?

ST -
- ik

3 SSA/Three »
: address
code

Motivation?

« How does this talk align with the compiler class?

b il
~<g - o

SSA/Three %
: address
code

¥ Non- Ambiguous %
grammars :

Motivation?

« How does this talk align with the compiler class?

b il
~<g - o

SSA/Three %
: address
code

o Production
¥ Non- Ambiguous %
grammars ¥

rules

Motivation?

« How does this talk align with the compiler class?

b il
~<g - o

SSA/Three %
: address
code

F 4 Production
¥ Non- Ambiguous %
grammars ;

rules

Motivation?

« How does this talk align with the compiler class?

Techniques
used by
compilers

Motivation?

« How does this talk align with the compiler class?

Motivation?

« How does this talk align with the compiler class?

« What are some shortcomings of early compilers?

Motivation?

« What are some shortcomings of early compilers?

Motivation?

« What are some shortcomings of early compilers?

Motivation?

« What are some shortcomings of early compilers?

Motivation?

« What are some shortcomings of early compilers?

Motivation?

« What are some shortcomings of early compilers?

Motivation?

« What are some shortcomings of early compilers?

Motivation?

« What are some shortcomings of early compilers?
L

ey
{\ &7 N
v &
S ’)‘» y Id
| ¥
= |
—t

!
.

Even Bob the Builder, is
confused about where to start

Motivation?

« What are some shortcomings of early compilers?

We need a modern compiler!

Motivation?

 Introduction to LLVM

LLVM

Low Level Virtual Machine

DEVELOPERS" MEETING

EURO LLVM

EURO LLVM

DEVELOPERS’ MEETING SAN JOSE, CALIFORNIA « HAYES MANSION

)
i

)

< b

3

(e
(=

{1

f

‘\
A
A Q
)
B
7/

Al
7

=)

DEVELOPERS" MEETING

EVRO LAY

DEVELOPERS’ MEETING

z \
Y

4'..5 /‘NF "‘%r«\ ‘p*l

pEVELOPERS’ MEETING - (BAJRE LAY

DEVELOPERS’ MEETING

DEVELOPERS’ MEETING @U.. LAY

DEVELOPERS’ MEETING

DEVELOPERS MEETING

OCTOBER 6-8

H

W

N
<

‘§

=7
A
[~ (1

vi

V%f'ﬁ

Bl

DEVELOPERS’ MEETING

L r;' »
DEVELOPERS MEETING
OCTOBER 6-8

5 “J MLU%

DEVELOPERS’ MEETING

dLLYMDEYS I
v

DEVELOPERS MEETING
OCTOBER 6-8 DEVELOPERS' MEETING

Picture credits: Bob the Builder

Motivation?

 Introduction to LLVM What happens inside
the front end?

 Lexical Analysis

Program

C++ code

LLVM

e Lexical Analysis (tokenization or scanning)

* [t breaks the source code into individual tokens, such as identifiers,
keywords, literals, and operators.

 Example of lexical analysis for a simple arithmetic expression:
"5+ 3 * (7 - 2)"

Motivation?

 Introduction to LLVM What happens inside
the front end?

 Lexical Analysis

o Syntax Analysis

Program

C++ code

LLVM

e Syntax Analysis

* |t builds the abstract syntax tree (AST) from the tokens.
* AST represents the hierarchical structure of the source code.

* Capturing the relationships between different
elements and their corresponding expressions,
statements, and declarations.

Motivation?

 Introduction to LLVM What happens inside
the front end?

 Lexical Analysis

o Syntax Analysis

Program

C++ code

 Semantic Analysis

LLVM

« Semantic Analysis

 Semantic analysis ensures the program is well-formed and meaningful
according to the language's rules and specifications.

* |t helps catch errors and inconsistencies that may not be detected
during lexical and syntax analysis alone.

Motivation?

 Introduction to LLVM What happens inside
the front end?

 Lexical Analysis

o Syntax Analysis

Program

C++ code

 Semantic Analysis

 LLVM IR generation

LLVM

« LLVM IR generation.

#include <iostream=

int main() {
int X 5:
int vy 10;

int z X + V;

return 0;

LLVM

« LLVM IR generation.

; Function Attrs: mustprogress noinline norecurse nounwind optnone uwtable
define dso local noundef 132 @main() #4 {

%1 = alloca 132, align 4

%2 = alloca 132, align 4

%3 = alloca 132, align 4

%4 = alloca 132, align 4

store 132 0, 132* %1, align 4

store 132 5, 132* %2, align 4
store i32 10, 1i32* %3, align 4
%5 = load 132, 132* %2, align 4
%5 = load 132, 132* %3, align 4
%7 = add nsw 132 %5, %6

store 132 %7, 132* %4, align 4
ret 132 o

Motivation?

e Introduction to LLVM What happens inside
the front end?

 Lexical Analysis

 Syntax Analysis

Program

C++ code

« Semantic Analysis

 LLVM IR generation

 Optional
Optimizations

LLVM

 Optional Optimizations

 Constant folding - simplifies expressions involving constants and
replaces them with their computed values.

; Function Attrs: mustprogress noinline norecurse nounwind optnone uwtable
define dso local noundef 132 @main() #4 {

%1 alloca 132, align 4

%2 alloca 132, align 4

%3 alloca 132, align 4

%4 alloca 132, align 4

store 132 0, 132* %1, align 4

store 132 5, 132* %2, align 4
store i32 10, i32* %3, align 4
%5 = load 132, 132* %2, align 4
%5 = load 132, 132* %3, align 4
%7 add nsw 132 %5, %6

store 132 %7, 132* %4, align 4
ret 132 o

LLVM

 Optional Optimizations

 Constant folding - simplifies expressions involving constants and
replaces them with their computed values.

; Function Attrs: mustprogress noinline norecurse nounwind optnone uwtable
define dso local noundef 132 @main() #4 {

%1 alloca 132, align 4

%2 alloca 132, align 4

%3 alloca 132, align 4

%4 = alloca 132, align 4

store i32 0, i32* %1, align 4

store i32 5, i132* %2, align 4
store i32 10, i32* %3, align 4
%7 = add nsw 132 5, 10

store 132 %7, 132* %4, align 4
ret 132 0

Motivation?

e Introduction to LLVM What happens inside the
front end?

 Lexical Analysis

 Syntax Analysis

Program

G+ code « Semantic Analysis

« LLVM IR generation

 Optimizations

« Warnings and errors

LLVM

 Warnings and errors.

#include <iostream=

int main() {
int X 5;
int y 10;

int z = x * y; // Warning: Unused variable

return @; J/ Error: Missing semicolon

LLVM

 Warnings and errors.

program.cpp:7:9: warning: unused variable 'z' [-Wunused-variable]
int z = x * y; J/ Warning: Unused variable
M

1 warning generated.

program.cpp:9:13: error: expected ':' after return statement

return @ f/ Error: Missing semicolon
M

a
>

1 error generated.

Motivation?

e Introduction to LLVM What happens inside the
middle end?

 Data Flow Analysis (DFA)

Program Front Middle
C++ code end end

LLVM IR

LLVM

 Data Flow Analysis (DFA)

#include <iostream=

int main() {
int x
int y
int z;

if (x = y) {

Z =X+ V;
} else {

L =X - Y,
3

return 0;

Start

LLVM

 Data Flow Analysis (DFA)

#include <iostream=

int main() {

X>Y X<Y

if (x = y) {
Z =X+ Yy;

} else { Z=X+Y Z=X-Y
Z =X - V;

3

PEENrn return return

Start

LLVM

e |Is there a dead code?

#include <iostream=

int main() {
't W .
int y = 5: X>Y X<Y

int z;

if (x = y) {

Z =X+ V;

} else { Z=X+Y Z=X-Y
Z =X - V;

3

PEENrn return return

BA Y .

e Yes!

#include <iostream=

int main() {
int X

int y = 55 X>Y X<Y

int z;

iF (x>y){
Z =X+ V;

} else { Z=X+Y Z=X-Y

Z =X - y;

3

PEENrn return return

Motivation?

 Introduction to LLVM What happens inside the
middle end?

 Data Flow Analysis (DFA)

- o » Control Flow Analysis
Program ront iddle
C++ code end end (C FA)

LLVM IR

Motivation?

e Introduction to LLVM What happens inside the
middle end?

 Data Flow Analysis (DFA)

: S » Control Flow Analysis
Program ront iddle
C++ code end end (C FA)

- * Alias Analysis (AA)

Motivation?

e Introduction to LLVM What happens inside the
middle end?

 Data Flow Analysis (DFA)

R S * Control Flow Analysis
rogram ron iddle
» = » - (CFA)

Alias Analysis (AA)

LLVM IR

« Data Dependence
Analysis (DDA)

Motivation?

e Introduction to LLVM What happens inside the
middle end?

 Optimizations

 Transformation passes
Program Front Middle
C++ code end end :

 Analysis passes

LLVM IR

Motivation?

e Introduction to LLVM What happens inside the
middle end?

 Optimizations

| * Optimization ordering
Program Front Middle
C++ code end end

LLVM IR

LLVM

* Optimization ordering

 The reason behind ordering?
 What if there is a functionality change?

 Transformation and Analysis passes.

Motivation?

e Introduction to LLVM What happens inside the
middle end?

 Optimizations

* Optimization orderin
Program Front Middle p = de g
C++ code end end : : :

 Generating optimized

LLVM IR LLVM'IR

Motivation?

 Introduction to LLVM

Program Front Middle Back
C++ code end end end

LLVM IR LLVM IR

Motivation?

 Introduction to LLVM What happens inside the
back end?

 Target-Specific Code
Generation

Middle Back
end end

LLVM IR

Motivation?

 Target-Specific Code Generation

CPUY
Program Front Middle Back CPU Z
C++ code end end end
LLVM IR LLVM IR
CPUC

CPUV

Motivation?

 Introduction to LLVM What happens inside the
back end?

 Target-Specific Code
Generation

Middle Back Instruction Selection
end end

LLVM IR

Motivation?

e Instruction Selection
* Instruction Matching

 Cost analysis and pattern matching

e DAG (Directed Acyclic Graph)

Motivation?

 Instruction Selection

 DAG (Directed Acyclic Graph)

* DAG (Directed Acyclic Graph) - It captures the dependencies
and operations of the program as nodes and edges in a
directed graph. Each node in the DAG represents an operation
or value, and the edges represent the data flow between them.

 Overall, DAG-based instruction selection in LLVM's backend is
crucial in mapping high-level IR to target-specific machine
code, enabling efficient and optimized code generation for a
wide range of target architectures.

Motivation?

 Instruction Selection

 Global ISEL (Global Instruction Selection)

It aims to improve instruction selection by performing the selection process
across the entire function or module globally rather than on a per-basic-block
basis, as done in the DAG approach.

Improved Code Quality: By considering a broader context and optimizing
across the entire function or module.

Code Sharing: Global ISEL can identify opportunities for code sharing and
reuse across different basic blocks and paths, leading to reduced code size
and improved cache locality.

Simplified Code Generation: With Global ISEL, the instruction selection
process becomes more unified and cohesive since it operates globally.

Motivation?

 Introduction to LLVM What happens inside the
back end?

 Target-Specific Code
Generation

Middle Back Instruction Selection
end end

LLVM IR * Instruction Scheduling

Motivation?

Instruction Scheduling

e The backend determines the order of instructions to be
executed to maximize the performance of the generated
code.

* Instruction scheduling considers factors such as instruction
dependencies, pipeline hazards, and the target
architecture's specific execution characteristics to minimize
stalls and improve instruction-level parallelism.

Motivation?

 Introduction to LLVM What happens inside the
back end?

 Target-Specific Code

Generation
PUEEE FEEs » Instruction Selection
end end
LLVM IR * Instruction Scheduling

 Register Allocation

Motivation?

 Register Allocation

* Virtual Register Allocation - virtual registers are initially
unlimited and can hold any value.

 This allows for efficient analysis and optimization
without the limitations of physical registers.

 Register Interference Analysis - determine which virtual
registers may conflict with each other.

Motivation?

 Introduction to LLVM What happens inside the
back end?

 Target-Specific Code
Generation

Middle Back e Instruction Selection
end end

e Instruction Scheduling

LLVM IR

 Register Allocation

e Code emission

Motivation?

 Introduction to LLVM

Program Front Middle Back Machine
C++ code end end end code

LLVM IR LLVM IR

Motivation?

 Introduction to LLVM

Program
Rust code

Program Front Middle Back Machine
C++ code end end end code

LLVM IR LLVM IR

Program
Haskell
code

Motivation?
 Benefits of LLVM

 Modularity and Extensibility

Motivation?
 Benefits of LLVM

 Modularity and Extensibility
 Portability

Motivation?

* Benefits of LLVM
 Modularity and Extensibility
 Portability

 Optimizations

Motivation?
 Benefits of LLVM
 Modularity and Extensibility
 Portability
 Optimizations

 Justin time, execute the code on the fly

Motivation?
 Benefits of LLVM
 Modularity and Extensibility
 Portability
 Optimizations
 Justin time, execute the code on the fly

 Supported tools (LLDB, GDB)

Motivation?

 Benefits of LLVM
 Modularity and Extensibility
 Portability
 Optimizations
 Justin time, execute the code on the fly
 Supported tools (LLDB, GDB)

« Community and easier Adoption

you :)

