CSE110A: Compilers

May 3, 2023

Topics:
* One bonus lecture on parsing!
* Parser generators

int main() {

printf(“*);
return 0;

N

Announcements

e HW 2!
e due on Thursday at Midnight
* Some of office hours left, but be careful because mine fill up quickly

* We are working on grading HW 1

* Midterm will be given on May 8 (Monday)
e Taken during class
* Study material is homeworks, slides, and book readings
* 3 pages of notes (front and back, handwritten or typed)

Announcements

* No Quiz today, work on homework!

Homework 2 clarifications

* Tip for starting on statement rules

e A statement can be one of the following:

— A variable declaration, which is a type name followed by an ID, followed by a semi colon.
Types for C-simple are ints or floats.

— An assignment statement, which is ID followed by = followed by an expression.

— An if-else statement, which is the keyword ”if” followed by an expression enclosed in
()s. Next is a statement, followed by the "else” keyword. Following “else” is another
statement.

Simply translate the English:

e A statement can be one of the following:

— A variable declaration, which is a type name followed by an ID, followed by a semi colon
Types for C-simple are ints or floats.

— An assignment statement, which is ID followed by = followed by an expression.

— An if-else statement, which is the keyword ”if” followed by an expression enclosed in

()s. Next is a statement, followed by the “else” keyword. Following "else” is another
statement.

Simply translate the English:

Statement ::= variable declaration

assignment statement
| if else statement

e A statement can be one of the following:

— A variable declaration, which is a type name followed by an ID, followed by a semi colon
Types for C-simple are ints or floats.

— An assignment statement, which is ID followed by = followed by an expression.

— An if-else statement, which is the keyword ”if” followed by an expression enclosed in

()s. Next is a statement, followed by the “else” keyword. Following "else” is another
statement.

Simply translate the English:

Statement ::= variable declaration

assignment statement
| if else statement

variable declaration ::= TYPE ID SEMI

e A statement can be one of the following:

— A variable declaration, which is a type name followed by an ID, followed by a semi colon
Types for C-simple are ints or floats.

— An assignment statement, which is ID followed by = followed by an expression.

— An if-else statement, which is the keyword ”if” followed by an expression enclosed in

()s. Next is a statement, followed by the “else” keyword. Following "else” is another
statement.

Simply translate the English:

Statement ::= variable declaration

assignment statement
| if else statement

variable declaration ::= TYPE ID SEMI

e A statement can be one of the following:

— A variable declaration, which is a type name followed by an ID, followed by a semi colon.
Types for C-simple are ints or floats.

— An assignment statement, which is ID followed by = followed by an expression.

— An if-else statement, which is the keyword ”if” followed by an expression enclosed in

()s. Next is a statement, followed by the “else” keyword. Following "else” is another
statement.

Simply translate the English:

Statement ::= variable declaration

assignment statement
| if else statement

variable declaration ::= type ID SEMI

type = FLOAT

INT

Homework 2 clarifications

 Statement precedence

* Do we need to encode statement precedence? Or associativity?

Homework 2 clarifications

Statement list ::= Statement list Statement
| Statement
Statement list ::= Statement Statement list

| Statement

Which one do we want?

Homework 2 clarifications

Statement list ::= Statement list Statement

Statement

We don’t want left recursion for top-down
parsing

We might want left recursion for left
associativity

Statement list ::= Statement Statement list

Statement

int x; x = 42; x = 52;

think about this program. We want to evaluate it left to right.

Homework 2 clarifications

Statement list ::= Statement Statement list
| Statement

int x; x = 42; x = 52;
Statement list

RN

int x; Statement list

/N

Statement list

X = 52;

Homework 2 clarifications

Statement list ::= Statement Statement list
Statement

int x; x 42;

i
I

52;

Statement list

RN

int x; Statement list

there is no evaluation
associated with a

statement list. The evaluation
should occur at the statement

Thus we can use the right recursive
form with no issue. We also don’t
have to worry about statement
precedence

Statement list

X = 52;

Homework 2 clarifications

e Left associativity and left recursion expressions

Simple grammar for minus expressions

Expr ::= Expr MINUS NUM 5 _ 4 _ 3
NUM
Expr
EXpr A3 Left recursive grammar

makes this parse tree. It encodes

// \ associativity

Simple grammar for minus expressions

Expr ::= Expr MINUS NUM 5 -4 -3
NUM
EXpr Left recursive grammar
/ makes this parse tree. It encodes
A associativity.
Expr 3
// \ But left recursion won’t work
5) 4 for top-down parsers!
What if we do it right recursive 5 -4 -3
Expr ::= NUM MINUS EXpr ExXpr
NUM // \ We can use this grammar in a top-down
5 EXpr parser, but it doesn’t encode associativity

AN

Simple grammar for minus expressions

Expr ::= Expr MINUS NUM 5 -4 -3
NUM
Expr Left recursive grammar
/ makes this parse tree. It encodes
A associativity.
Expr 3
// \ But left recursion won’t work
5 4 for top-down parsers!

What if we follow the recipe

NUM Expr?2
MINUS NUM Expr2

“n

Expr
Expr2

Simple grammar for minus expressions

Expr ::= Expr MINUS NUM

| NUM

What if we follow the recipe

Expr ::= NUM Expr2

Expr2 ::= MINUS NUM Expr2

| "

5 -4 -3
Expr
— N\
Expr 3
I\
5 } 4
Expr
/T
Expr2
I
- 4 EXpr2

RN

= 3 Expr2

Left recursive grammar
makes this parse tree. It encodes

associativity.

But left recursion won’t work
for top-down parsers!

How about this one?

Simple grammar for minus expressions

Expr ::= Expr MINUS NUM 5 -4 -3
| NUM
Expr
ExXpr _/\}
5 _/ 4
| ; Expr
What if we follow the recipe / \
Expr ::= NUM Expr2 5 Expr2
Expr2 ::= MINUS NUM Expr2 ////‘\\\
| un ” 1 Expr2
= 3 Expr2

Left recursive grammar
makes this parse tree. It encodes

associativity.

But left recursion won’t work
for top-down parsers!

How about this one?
It isn’t really clear...

We will talk about it more in the next
module; you should encode
associativity in your original grammar
(1.1) and use the recipe for eliminating
left recursion for the rest.

Quiz

Error messages about undeclared variables are printed by

(O Scanner
(O Parser
(O Symbol Table

(O Code Generator

Quiz

Error messages about undeclared variables are printed by

(O Scanner
(O Parser

(O Symbol Table

(O Code Generator

int x;

int y;
X++;
y++;

4

y++;

Quiz

Thinking about scoping rules for Python and C (constrained to a single function): Please write a few
sentences about the differences in how each language should utilize a symbol table, e.g. to catch
variables that are used before they are defined.

Quiz

Thinking about scoping rules for Python and C (constrained to a single function): Please write a few
sentences about the differences in how each language should utilize a symbol table, e.g. to catch
variables that are used before they are defined.

int main() {

if (1): if (1) o
¥ =5 int x = 5;
print(x) ¥
printf("%d\n",x);
}

is this allowed?
is this allowed?

Quiz

Thinking about scoping rules for Python and C (constrained to a single function): Please write a few
sentences about the differences in how each language should utilize a symbol table, e.g. to catch
variables that are used before they are defined.

int main() {

if (1): if (1) {
x =5 int x = 5;
print(x) ¥

printf("%d\n",x);
}

isthisallowed?. < thic al d?.
is this allowed®

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

O True

(O False

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True
(O False
5 -4 -3
Simple grammar for minus expressions /Expr
ExXpr 3

Expr ::= Expr MINUS NUM

NUM // \

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True
(O False
5 -4 -3
Expr
Simple grammar for minus expressions /
Expr 3

Expr ::= Expr MINUS NUM {return $1 - $3}

NUM {return $1} /////7\\\\

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True
(O False
5 -4 -3
Expr
Simple grammar for minus expressions /
Expr 3

Expr ::= Expr MINUS NUM {return $1 - $3}

NUM {return $1} /////7\\\\

5 4

returns 5 ' returns 4 |

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True

(O False

Simple grammar for minus expressions

Expr ::= Expr MINUS NUM {return $1 - $3}
NUM {return $1}

returns 1

5 -4 -3

Expr

— N

Expr

AN

5

returns 5

4

returns 4

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

O True
O False
5 -4 - 3
Expr
Simple grammar for minus expressions returns 1 /
Expr 3

Expr ::= Expr MINUS NUM {return $1 - $3} - returns 3

NUM {return $1} /////7\\\\

5 4

returns 5 ' returns 4 |

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

returns -2

O True
O False
5 -4 - 3
Expr
Simple grammar for minus expressions returns 1 /
Expr 3

Expr ::= Expr MINUS NUM {return $1 - $3}

NUM {return $1} /////7\\\\

5 4

returns 3

returns 5 ' returns 4 |

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True

(O False

So why can’t we always evaluate arithmetic expressions during parsing?

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True
(O False
So why can’t we always evaluate arithmetic expressions during parsing?
X-Y -z Expr
Expr ::= Expr MINUS UNIT {return $1 - $3} // \
UNIT {return $1} EXpr ”
UNIT ::= NUM {return $1})
ID {return $1} //////\\\\
X) y

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True

(O False

We cannot evaluate the program unless we know the value of x,y,z. What are some examples when we
wouldn’t know the values?

X-Y -z EXpr
Expr ::= Expr MINUS UNIT {return $1 - $3} //////V \
UNIT {return $1} EXpr Z
UNIT ::= NUM {return $1})
ID {return $1} //////\\\\
X) Y

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True

(O False

But we might be able to do some optimizations...

Expr

UNIT

Expr MINUS UNIT {return $1 - $3}

UNIT {return $1}
::= NUM {return $1}
ID {return $1}

X-Y -2 Expr
1\
Expr .z

N

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True

(O False

But we might be able to do some optimizations...

Expr

UNIT

Expr MINUS UNIT {return $1 - $3}

UNIT {return $1}
::= NUM {return $1}
ID {return $1}

X - X -z EXpr
—\
Expr .z

N

Quiz

We can always evaluate arithmetic computations during parsing using parser actions.

(O True

(O False

But we might be able to do some optimizations...

X - X - 2 EXpr
Expr ::= Expr MINUS UNIT {if $1 == $3 then 0 else ...} ///////// \
UNIT {return $1} 0 z
UNIT ::= NUM {return $1})
ID {return $1}

Quiz

It is the last lecture of Module 2; please let me know any feedback you might have about the
module: e.g. what you enjoyed or what you think could be improved.

Parser generators

calculator example

These slides follow the calculator example from the PLY documentation

calculator example

import ply.lex as lex
tokens = ["NUM", "MULT", "PLUS", "MINUS", "DIV", "LPAR", "RPAR"]

t_NUM = '[0-9]+'

t_MULT = "\x'

t_PLUS = '\+'

t_MINUS = '-'

t DIV = '/'

t_LPAR = "\("

t RPAR = “\)" Set up the lexer
t_ignore = ' '

Error handling rule
def t_error(t):

print("Illegal character '%s'" % t.valuel@])
exit(1)

lexer = lex.lex()

calculator example

* Import the library

ply.yacc yacc

e Simple rule

p_expr_num(p):

"expr : NUM" functions are given prefixed by p
[0] = int(p[1]) o

production rules are the doc string

return values are stored in p[0]
children values are in p[1], p[2], etc.

calculator example

* Try it out

calculator example

e Next rule

def p_expr_plus(p):
"expr : expr PLUS expr"
[0] = p[1] + pl3]

* Try it again

calculator example

 Set associativity (and precedence)

= (
('left’, '"PLUS'"),
)

calculator example

 Next rules

def p_expr_minus(p):
"expr : expr MINUS expr"
plo] = pl1] - pl3]

def p_expr_mult(p):
"expr : expr MULT expr"
pl@] = pl1l] % p[3]

def p_expr_div(p):
"expr : expr DIV expr"
plo] = pl1] / pl3]

precedence =
('left’,
('left’,

[
'PLUS',
'"MULT",

'MINUS'),
‘DIV'),

calculator example

* Last rule for expressions

def p_expr_par(p):
"expr : LPAREN expr RPAREN"
plo] = pl2]

calculator example

* An extra we can easily implement

def p_expr_div(p):
"expr : expr DIV expr"
if pl[3] == 0:
print("divide by @ error:")
print("cannot divide: " + str(p[1]) + " by 0")
exit(1)
ple] = pl1l] / pl3]

calculator example

* Combining rules:

def p_expr_plus(p):
"expr : expr PLUS expr"
ple] = pl[1l] + pl3]

def p_expr_minus(p):
"expr : expr MINUS expr"
plo] = pl1] - pl3]

def p_expr_mult(p):
"expr : expr MULT expr"
pl@] = pl1l] % p[3]

def p_expr_bin(p):
expr : expr PLUS expr
| expr MINUS expr
| expr MULT expr

if pl2] == "+":

nl@] = pl1] + pl3]
elif p[2] == '-':

pl@] = pl1] - pl3]
elif pl[2] == "*':

n[0] = pl[1] * pl[3]
else:

assert(False)

calculator example

* Even simpler implementation using functions as token values

calculator example

e Other useful options
* Error recovery?

* Error reporting (it is better in our top down parsers because we can say which
token we were looking for)

calculator example

* Recovering from errors
e Be careful! Only do this if your users expect it!

def p_error(p):
if p:
print("Syntax error at token, ignoring and moving on", p.type)
Just discard the token and tell the parser it's okay.
parser.errok()
else:
print("Syntax error at EOF")

See you on Friday!

* Finish HW 2

* Starting the next module: intermediate representations

