CSE110A: Compilers

May 24, 2023

Topics:
* Basic Blocks
* Local Value numbering

Announcements

* HW 4 is due on Monday

* No guaranteed help on weekends or holidays
* Working on grading HW 2 and HW 3: grades should be out soon.

* HW 5 is planned to be released on Monday

Quliz review

|dentify the largest common subexpression of the following program:

Quliz review

intx=1+2;
inty=1+x*x"*x;
intz=x+y*1+2+3;
if(z==2+y*1){

intw=1+2+3;

O1+2+3
O x*x*x
Oy"1+2

O2+3

Quliz review

Perform Constant propagation on the following program; what would the function return? (assume
“if-statement’ is a 'constexpr if-statement')

int a = 30;
int b =9 - (a / 5);
int c;
c=b* 4,
if (c > 10) {
c =c - 10;
3

return ¢ * (60 / a);

Quliz review

loop unrolling is a

O local

(O regional

O global

optimization

Optimization categories

Next category level is how much code we need to reason about for the
optimization.

* local optimizations: examine a “basic block”, i.e. a small region of
code with no control flow.
* Examples?

* Regional optimizations: several basic blocks with simple control flow.
 Examples?

* Global optimization: optimizes across an entire function

Quiz review

Describe some compiler optimizations you know of. Write one (or more) small example program on
Godbolt and look at the llvm IR (using -emit-llvm on a clang compiler) or ISA code. You can also play
with optimization flags (-O0, -O3, etc). Did the compiler do the optimization you thought of?

Describe your program and the optimization below. Feel free to share your experiment on piazza!

New material

Basic blocks

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:
* There is a single entry, single exit

Single Basic Block

. . Label x:
* Important property: an instruction opl;
in a basic block can assume that all op2;
preceding instructions will execute gi3iabel .

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label_ x:
el opl;
. . Label x: .
o lmportant property: an instruction opl: ggir

in a basic block can assume that all op2;

preceding instructions will execute oP3;

Label y:
br label z;

op4;
op5;

How might they appearin a

| R P rog ra m St |" u Ct u re Z)i(gaf;lsl\;esl?language? What are some
* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label x:
bel opl;
. . Label Xx: .
* Important property: an instruction opl; ggi:
in @ basic block can assume that all op2; '
I I i i op3; Label vy:
preceding instructions will execute br 1abel z: Lake ¥

op5;

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:

* A sequence of 3 address instructions such that:

* There is a single entry, single exit

* Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

How might they appearin a
high-level language?

How many basic blocks?

If (x)

}

else {

}

{

Single Basic Block

Label x:
opl;

op2;

op3;

br label z;

Two Basic Blocks

Label x:
opl;
op2;
op3;

Label y:
op4;
op5;

Converting 3 address code into basic blocks

* Let’s try an example: test 4 in HW 3:

Converting 3 address code into basic blocks

e Simple algorithm:
* keep a list of basic blocks
e a basic block is a list of instructions (3 address code)

e |terate over the 3 address instructions

* if you see a branch or a label, finalize the current basic block and start a new
one.

Converting 3 address code into basic blocks

pseudo code

= []
= []
instr program:
instr type [branch, labell]:
bb.append(instr)
basic_blocks.append[bb]
= []

bb.append(instr)

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e

optimized

to
—

Label O0:
X = a + b;
y = X;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

O O

n
o o

Label O0:
X = a + b;

Label 1:
y = a + b;

optimized
to
—_

CANNOT
always optimized
to
—_

Label 0:
X = a + b;

Label 1:
y = X;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:
X = a + b;

Label 1:
y = a + b;

code could skip Label O,
leaving x undefined!

optimized

to
e

CANNOT
always optimized
to
—_

Label O0:
X = a + b;
y = X;

Label 0:
X = a + b;

Label 1:
y = X;

br Label 1;

Label O0:

X = a + b;

Label 1:

y = a + b;

Regional Optimization

if (x) |
} we cannot replace:
else { y=a+b.

X = a + b; with

y=X

Regional Optimization

if (x) {
} we cannot replace:
else { y=a+b.
X = a + b; with
} y=Xx
y = a + b;

X = a + b;
if (x) A

But in this case, we can check if a
} and b are not redefined, then
else { y=a+b

can be replaced with

} y=Xx
y = a + b;

This requires regional analysis and optimizations

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

O o9 O
I+ 1 +
Q. Q Q0

Q. Q O 9w

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;
b =a - d; valid? b =a - d;
c=b+c;| —* |c = a;

d = a - d; d =a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

C; a b + c;

d; valid? b=a-4d; No! Because b is redefined

0 Q 0o w
o nn
O oo O

I+ 1 +
Q
Q
i
o))

a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;
b =a - d; valid? b=a-d:;
c=b+c;| " |c=Db+ c;
d =a - d; d = b;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;

b =a - d; valid? b=a-d:;
c=b+c;| — > |c=Db+ c; yes!
d =a - d; d = b;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a=>b + c; Global_counter =0
b =a - d;
c = b + c;
d = a - d;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a2 = b0 + cl; Global_counter =7
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; o
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

—|az = b0 + cl; t “b0 + cl” : “a2”
b4 = a2 - d3; } '
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; t “DO + cl” : “a2”
— |b4 = a2 - d3; } '

cS = bd + cl;

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H =
a2z = b0 + clj “b0 + cl” “a2",
— |b4d = a2 - d3; “a2 - d3” : "b4",
c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H = {
a2z = b0 + clj “b0 + cl” “a2",
bd = a2 - d3; “a2 - d3” : "ba",
—— |c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; i WpO 4 ol : “g2n mismatch due to

b4 = a2 - d3; va2 - d3" : "bdr, numberings!
—— |c5 = bd + cl; }

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,
bd = a2 - d3; “a2 - d3” : "b4",

_ »|c5 = b4 + Cl; “b4d + cl” : “c5”,
d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

cS5 = bd + Cl; “b4d + cl” : “c5”,
_ . |d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

c5 = bd + cl; “b4 + cl” : "e57, match!
_ . |d6 = b4; }

What else can we do?

What else can we do?

Consider this snippet:

az2
f4
ch
dé6

cl
d3
b0
a2

- b0;

az2;

- cl;

d3;

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?
X OP y ==y OP x

What operators are commutative? Which ones are not?

Adding commutativity to local value
numbering

* For commutative operators (e.g. + *), the analysis should consider a
deterministic order of operands.

* You can use variable numbers or lexigraphical order

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

— a2 = cl - b0; ?z '
fd = d3 * a2;
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

cannot re-order because - is not commutative

f4 = d3 * a2; }
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl = bO” : “a2”
—— | f4 = d3 * a2; } '

c5 = b0 - cl;

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

re-ordered because a2 < d3 lexigraphically

az = cl - b0; t “cl - b0” : “a2”
— | £f4 = d3 * a2; "a2 * d3” “f4":

c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; “cl - b0” : “a2",

f4 = d3 * a2; "a2 * d3" : “f4r,
——|c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,
f4 = d3 * a2; "a2 * d3” : “f4",

—|c5 = b0 - cl; "b0 - cl “c5",
d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,

f4 = d3 * a2; "a2 * d3” : “f4",

c5 = b0 - cl; "b0 - cl” : “c5”,
—|d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

_ H = {
a2 - C]. bO, ucl - bO" . ua2",
f4 = d3 * a2; "a2 * d3” : “f4",
CS — bO — Cl; "bO - Cl" : ”C5",
—|d6 = f4; '

Other considerations?

Local value numbering w/out adding registers

e We've assumed we have access to an unlimited number of virtual
registers.

* In some cases we may not be able to add virtual registers
* |f an expensive register allocation pass has already occurred.

e New constraint:

* We need to produce a program such that variables without the numbers is
still valid.

Local value numbering w/out adding registers

* Example:
a = x + vy,
a = z;

b =x+vy;

numbering

local value
numbering with
unlimited virtual

registers
a3 = x1 + y2;
ab = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;
a = x + vy;
a = 2z;
b = a;

if we drop the
numbers, the
optimization is
invalid.

Local value numbering w/out adding registers

e Solutions?
a = X *+ ¥Y; | numbering
a = z;
b =x+vy;

a3
ab
b6

X1 + y2;
z4
X1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

o))

X + vy
We cannot optimize the first
line, but we can optimize the

BEEEEE | cconc

C X t+ vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

First we number

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a3 = x1 + y2;
ab = z4;

b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {

}

— la3 = x1 + y2; H = {
a5 = z4; '
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
— a3 = x1 + y2; H = {
a5=z4; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— | c7 = bb6;

Anything else we can add to local value
numbering?

Anything else we can add to local value
numbering?

* Final heuristic: keep sets of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

X+y;
X+y;

Q o O o
1 [| I |
~ m
I

X+y;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
}

a = x + vy; H =

b =x+vy; y

a = z;

cC = X + vy,

Work through example

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

a3 = x1 + y2;

bd = x1 + y2; o
a6 = z5;

c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
bd = a3 H={ but we could have
! “x1l + y2" @ *a3” replaced it with b4!
a6 = z5; }
— |7 = X1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall
}
rewind to
this point a3 = xl1 + Yz; H = {
— > |bd = x1 + y2; ixl + y2r a3
a6 = z5; }
c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
ua" 3,
"b" 4
}
a3 = x1 + y2; {
H =
EE— e °
b4 a3, uxl + y2" . [ua3", ub4"],

a6 = z5; }
c7 = x1 + y2; hash a list of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
b4 = a3; S,
fast forward - a’; “x1 + y2" : [“a3", "b4"],
again a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2; {
H =
fast forward bd = a3; “x1 + y2" : ["a3", "b4"],
again a6 = z5; }
— |c7 = bé;

Local value numbering: Memory

e Consider a 3 address code that allows memory accesses

afi] = x[]J] + y[k];
b[1] = x[]] + y[k];
is this transformation allowed? only if the compiler can prove that a does not alias x and y
No!
a[i] = x[]J] + y[k];
b[i] = a[i]; In the worst case, every time a memory location is updated,
- the compiler must update the value for all pointers.

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

(a[i1,3) = (x[31,1) + (y[k1l,2);
b[i1] = x[]] + y[k];

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (x[]],4) + (y[k]l,5);

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i1,3) = (x[31,1) + (y[k1l,2);

can we trace a, X,y to

(b[i],6) = (x[J1,4) + (y[k1,5); e tea
x = malloc(..);
y = malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i],3) = (x[31,1) + (y[k1,2);
(b[i1,6) = (x[31,1) + (y[kl,2); A A

X malloc(..);

in this case we do not have to update the number
Yy malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1],3) = (x[J1,1) + (y[k],2);
(b[1],6) = (x[]J1,4) + (vI[k],5); programmer annotations can also tell

the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1]1,3)
(b[1]1,6)

= (x[J1,1) + (y[kl,2);
= (x[J],4) + (v[k]l,5);

in this case we do not have to update the number

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (a[1],3);

Optimizing over wider regions
* Local value numbering operated over just one basic block.

* We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

* For this, we need Control Flow Graphs and Flow Analysis
* We may have time to discuss this later in the module

See everyone on Friday

* More about optimizations!

