CSE110A: Compilers

May 24, 2023

Topics:

• Start of Module 4

Announcements

- HW 4 is out
 - Due on Monday; get started and use office hours!
- Working on grading HW 2 and HW 3: expect grades by the end of the week
- One more homework left on optimizations

No quiz from last time

Start of module 4: optimizations

- What are compiler optimizations?
- Why do we want compiler optimizations?

- What are compiler optimizations?
 - automated program transforms designed to make code more optimal
 - optimal can mean different things
 - code optimized for one system might be different for code optimized for a different system
 - we can optimize for speed, for energy efficiency, or for code size. What else?
- Why do we want the compiler to help us optimize?
 - So we can write more maintainable/portable code
 - So we don't have to worry about learning nuanced details about every possible system

• What are some compiler optimizations you know about?

• What are some compiler optimizations you know about?

```
for (int i = 0; i < 10; i++) {
    x = x + 1;
}</pre>
```

loop unrolling

for (int i = 0; i < 10; i++) {
 x = x + 1;
 i++;
 x = x + 1;
}</pre>

• What are some compiler optimizations you know about?

```
for (int i = 0; i < 10; i++) {
    x = x + 1;
}</pre>
```

loop unrolling

for (int i = 0; i < 10; i++) {
 x = x + 1;
 i++;
 x = x + 1;
}</pre>

```
int foo() {
    int i,j,k;
    i = 10;
    j = i;
    k = j;
    return k;
}
```

constant propagation

int foo() {
 int i,j,k;
 return 10;
}

• What are some compiler optimizations you know about?

```
for (int i = 0; i < 10; i++) {
    x = x + 1;
}</pre>
```

loop unrolling

for (int i = 0; i < 10; i++) {
 x = x + 1;
 i++;
 x = x + 1;
}</pre>

What does this save us?

• What are some compiler optimizations you know about?

loop unrolling

```
for (int i = 0; i < 10; i++) {
    x = x + 1;
    i++;
    x = x + 1;
}</pre>
```

optimizations at one stage can enable optimizations at another stage:

provides a bigger window for local analysis

What does this save us?

• What are some compiler optimizations you know about?

let's do a few more

Function inlining

```
int add(int x, int y) {
   return x + y;
}
int foo(int x, int y, int z) {
   return add(x,y);
}
```

```
int foo(int x, int y, int z) {
    return x + y;
}
```

What does this save us?

code size? speed? the ability to debug? local regions to optimize more?

• What are some compiler optimizations you know about?

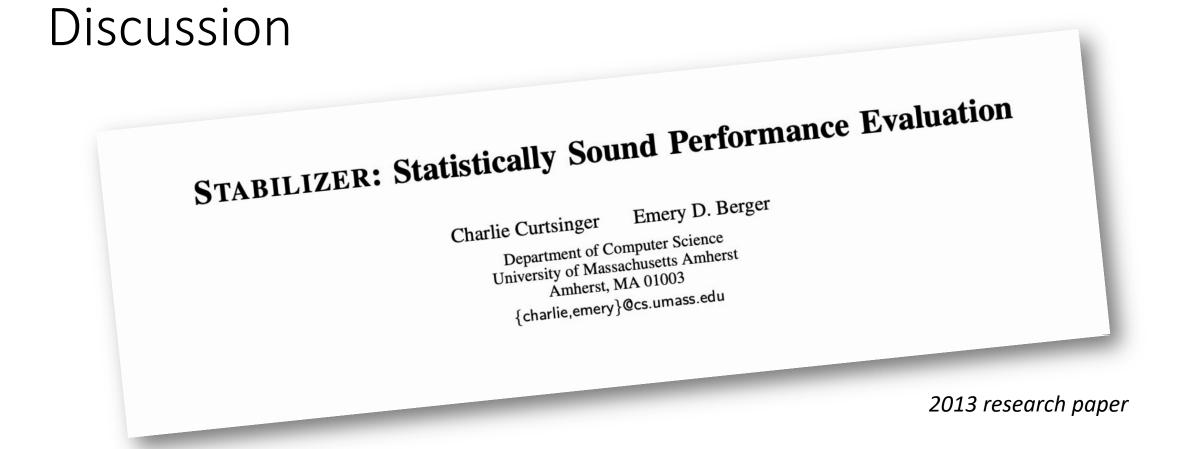
There are many more! This is an active area of research and development

For a rough metric:

git effort shows activities on different files and directories

clang C++/C parser: 3.5K commits clang AST: 8.7K commits LLVM transforms/optimizations: 30K commits

The transformation part of the code base has the most activity by far


• How do you enable compiler optimizations?

- How do you enable compiler optimizations?
- most C/++ compilers
 - optimizing for speed
 - -00, -01, -02, -03
 - what about O4?
 - optimizing for size
 - -Os, -Oz
 - relax some constraints (especially around floating point):
 - -Ofast
 - Godbolt example

- How do you enable compiler optimizations?
- most C/++ compilers
 - optimizing for speed
 - -00, -01, -02, -03
 - what about O4?
 - optimizing for size
 - -Os, -Oz
 - relax some constraints (especially around floating point):

Does -O3 actually make a difference?

- -Ofast
- Godbolt example

"the performance impact of -03 over -02 optimizations is indistinguishable from random noise."

• What are some of the biggest improvements you've seen from compiler optimizations?

- What are some of the biggest improvements you've seen from compiler optimizations?
- compiler optimizations are great at well-structured, regular loops and arrays
- Example: adding together two matrices

- What kind of transforms on your code is the compiler allowed to do?
- many_add example

- What kind of transforms on your code is the compiler allowed to do?
- many_add example
- Why did we get such a dramatic increase?

- What kind of transforms on your code is the compiler allowed to do?
- many_add example
- Why did we get such a dramatic increase?
 - Programs must maintain their input/output behavior
 - Hard to precisely define (and still being discussed in C++ groups)
 - input/output can be files, volatile memory, console log, etc.

• Extreme example

```
void foo(int * arr, int n)
{
    int i, j;
    for (i = 0; i < n - 1; i++)
        for (j = 0; j < n - i - 1; j++)
            if (arr[j] > arr[j + 1]) {
            tmp = arr[j];
            arr[j] = arr[j + 1]);
            arr[j + 1] = tmp;
        }
}
```

```
int p(int arr[], int start, int end)
    int pivot = arr[start];
    int count = 0;
    for (int i = start + 1; i <= end; i++) {</pre>
        if (arr[i] <= pivot)</pre>
            count++;
    }
    int pivotIndex = start + count;
    swap(arr[pivotIndex], arr[start]);
    int i = start, j = end;
    while (i < pivotIndex && j > pivotIndex) {
        while (arr[i] <= pivot) {</pre>
            i++;
        while (arr[j] > pivot) {
            j--;
        if (i < pivotIndex && j > pivotIndex) {
            swap(arr[i++], arr[j--]);
    }
    return pivotIndex;
void foo(int *arr, int n)
    if (start >= end)
        return;
    int p = p(arr, m, n);
    foo(arr, start, p - 1);
    foo(arr, p + 1, end);
```

is this transform legal?

code from https://www.geeksforgeeks.org/

• Extreme example

bubble sort

Yes this transform would be legal!

Could any compiler figure it out? currently unlikely..

This is a technique called "super optimizing" and it is getting more and more interest

```
int p(int arr[], int start, int end)
{
```

int pivot = arr[start];

int pivotIndex = start + count; swap(arr[pivotIndex], arr[start]);

```
int i = start, j = end;
while (i < pivotIndex && j > pivotIndex) {
```

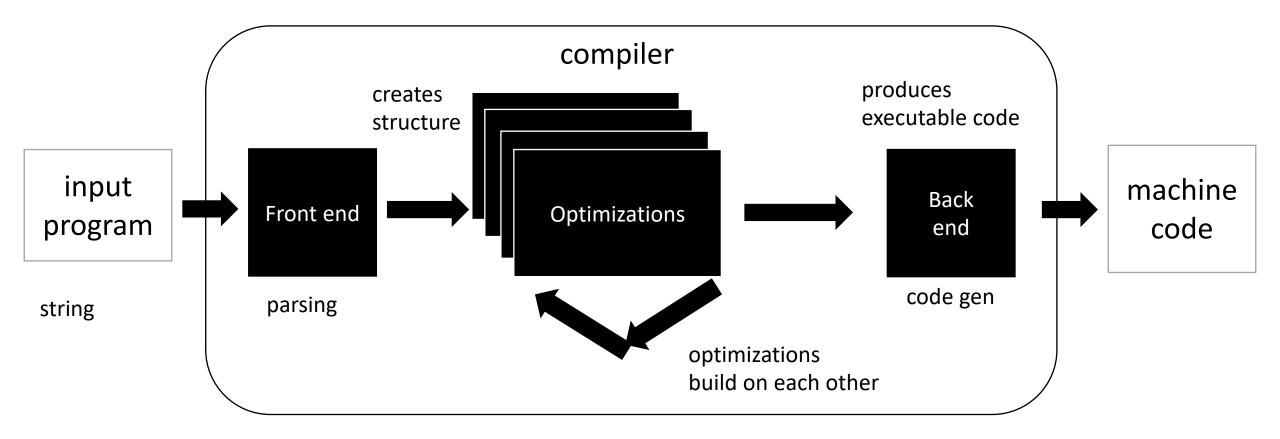
while (arr[i] <= pivot) {
 i++;
}
while (arr[j] > pivot) {
 j--;
}
if (i < pivotIndex && j > pivotIndex) {
 swap(arr[i++], arr[j--]);
}

return pivotIndex;

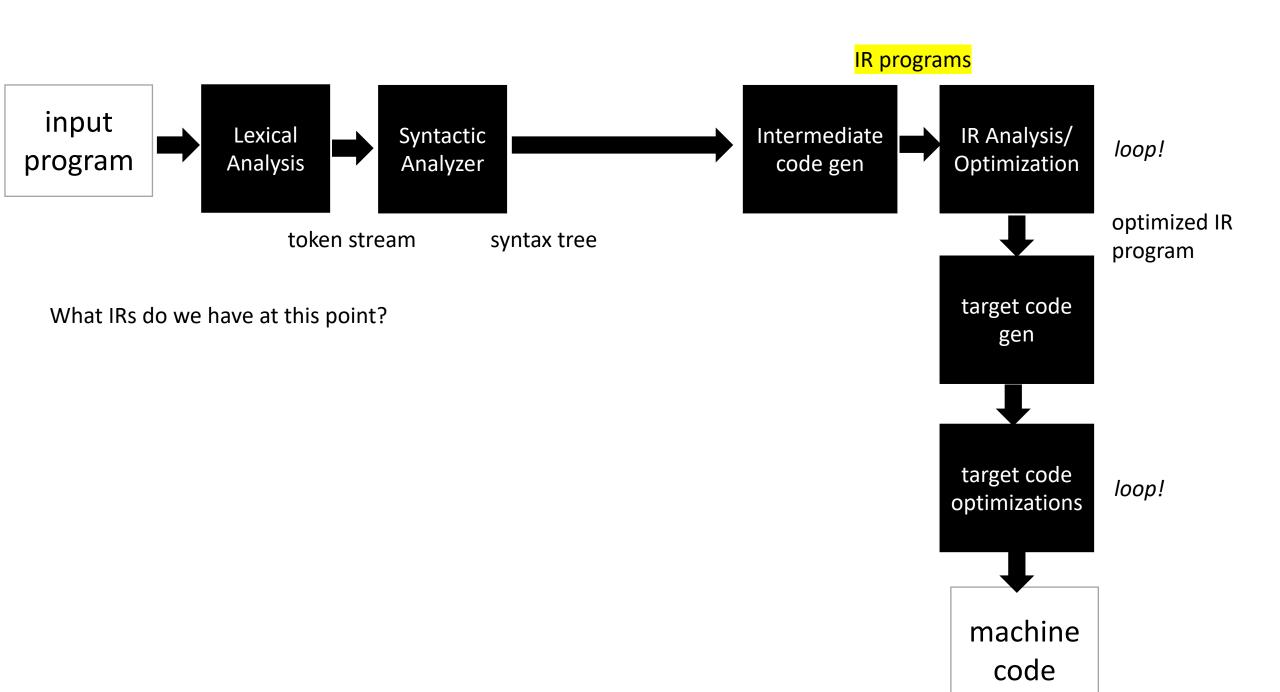
```
void foo(int *arr, int n)
{
```

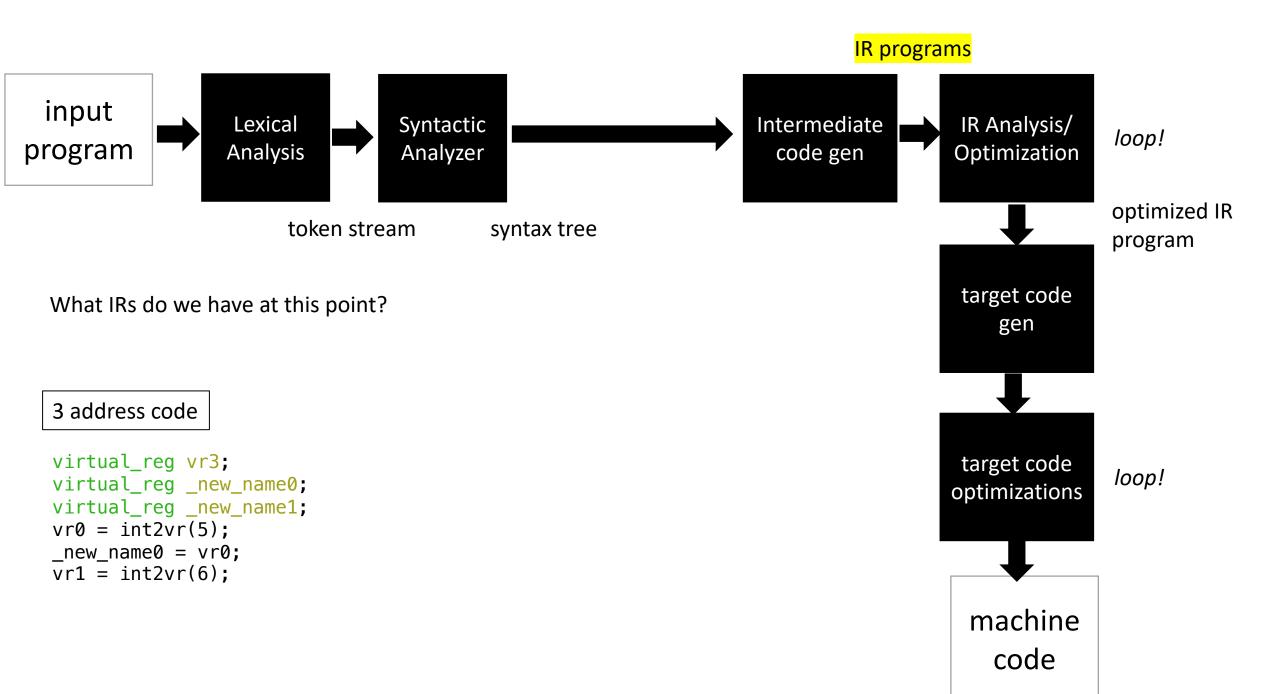
if (start >= end)
 return;
int p = p(arr, m, n);
foo(arr, start, p - 1);
foo(arr, p + 1, end);

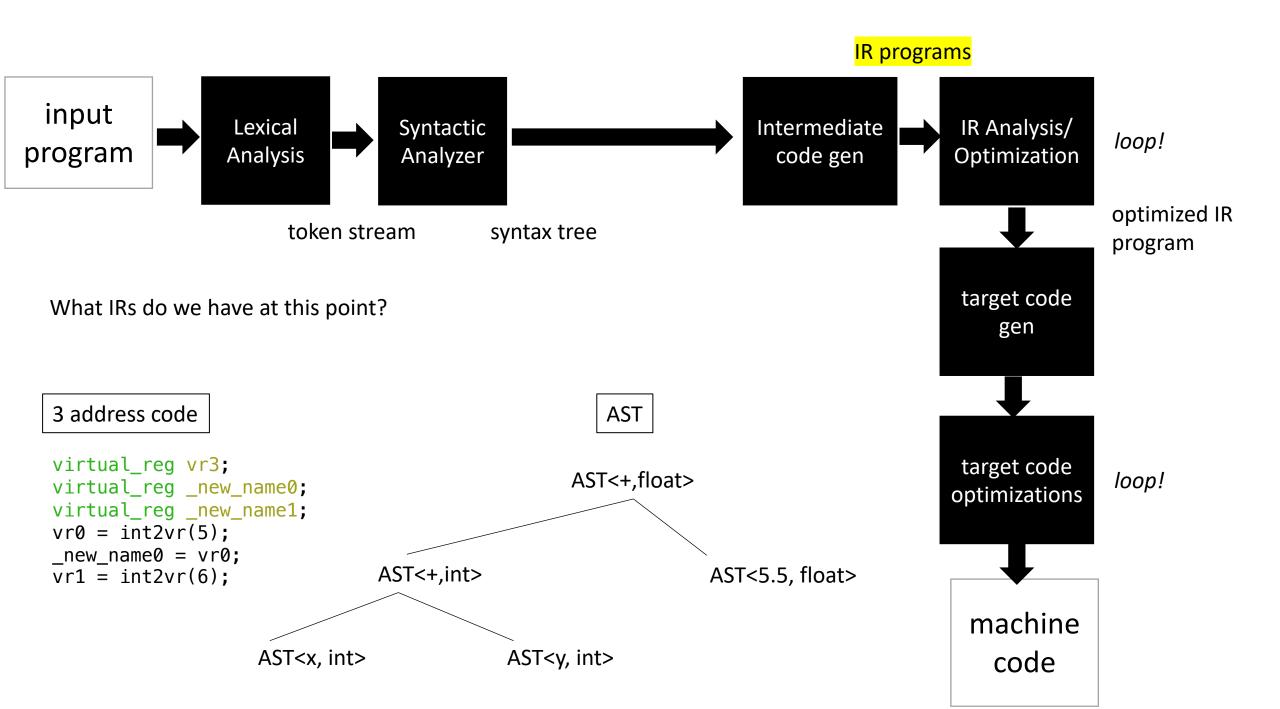
100(an

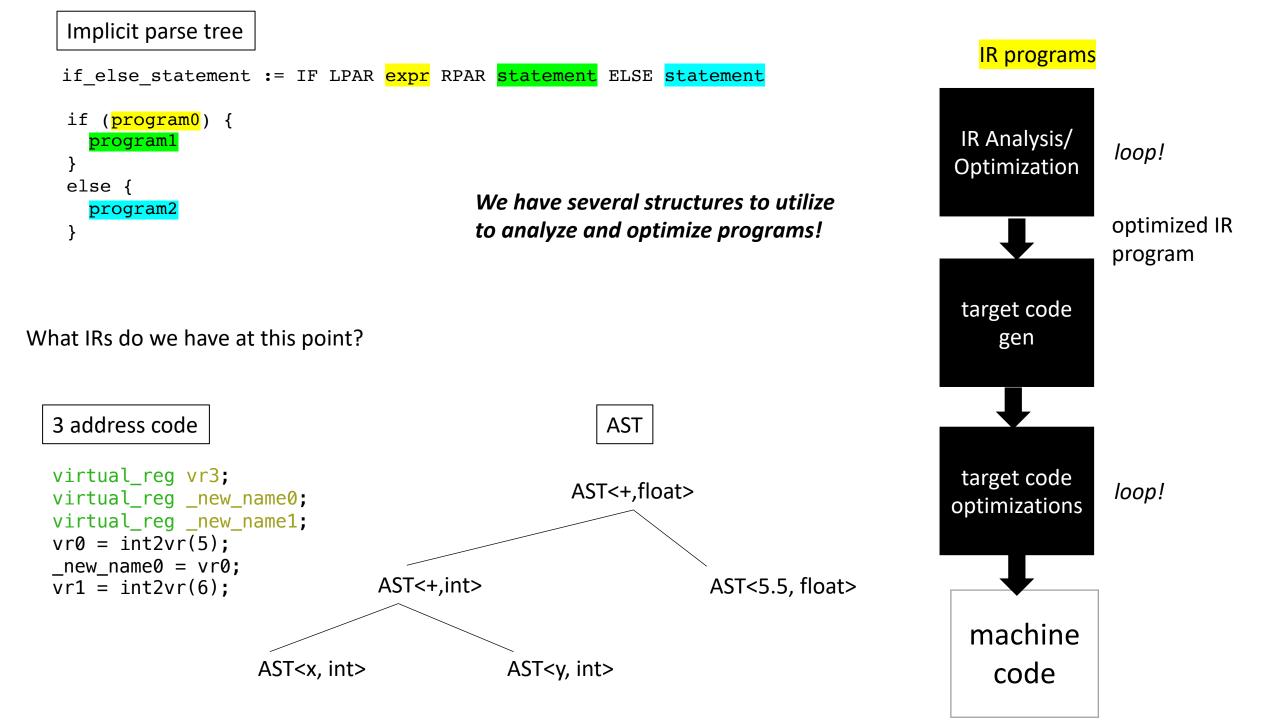

quick sort

is this transform legal?


code from https://www.geeksforgeeks.org/


Moving on


Zooming out again: Compiler Architecture



IRs and type inference type inference are at the boundary of parsing and optimizations

- Machine-independent these optimizations should work well across many different systems
 - Examples?

- Machine dependent these optimizations start to optimize the code for a given system
 - Examples?

- Machine-independent these optimizations should work well across many different systems
 - Examples?
 - All the examples we looked at before seem like they will help across many systems

- Machine dependent these optimizations start to optimize the code for a given system
 - Examples?
 - loop chunking for cache line size and vectorization.
 - instruction re-orderings to take advantage of processor pipelines.
 - fused multiply-and-add instructions

- Machine-independent these optimizations should work well across many different systems
 - Examples?
 - All the examples we looked at before seem like they will help across many systems

- In this module we will be looking at machine-independent optimizations. Module 5 might start to look at others
- What are the pros of machine-independent optimizations?

Next category level is how much code we need to reason about for the optimization.

- **local optimizations**: examine a "basic block", i.e. a small region of code with no control flow.
 - Examples?
- Regional optimizations: several basic blocks with simple control flow.
 - Examples?
- Global optimization: optimizes across an entire function

- **local optimizations**: examine a "basic block", i.e. a small region of code with no control flow.
- **Regional optimizations**: several basic blocks with simple control flow
- Global optimization: optimizes across an entire function

- What are the pros and cons of each?
- Why don't we go further than functions?

- local optimizations: examine a "basic block", i.e. a small region of code with no control flow.
- **Regional optimizations**: several basic blocks with simple control flow
- Global optimization: optimizes across an entire function

For this module:

- We will look at two optimizations in detail:
- A local optimization: Local value numbering
- A regional optimization: Loop unrolling
- We will implement both as homework
- We will discuss several other optimizations and analysis

Basic blocks

- A sequence of 3 address instructions
- Programs can be split into **Basic Blocks**:
 - A sequence of 3 address instructions such that:
 - There is a single entry, single exit

• *Important property*: an instruction in a basic block can assume that all preceding instructions will execute Single Basic Block

Label x: op1; op2; op3; br label z;

- A sequence of 3 address instructions
- Programs can be split into **Basic Blocks**:
 - A sequence of 3 address instructions such that:
 - There is a single entry, single exit

• *Important property*: an instruction in a basic block can assume that all preceding instructions will execute

Single Basic Block Label x: op1; op2; op3; br label z;

Two Basic Blocks

```
Label_x:
op1;
op2;
op3;
Label_y:
op4;
op5;
```

How might they appear in a high-level language? What are some examples?

- A sequence of 3 address instructions
- Programs can be split into **Basic Blocks**:
 - A sequence of 3 address instructions such that:
 - There is a single entry, single exit

• *Important property*: an instruction in a basic block can assume that all preceding instructions will execute

Single Basic Block Label x: op1; op2; op3; br label z;

Two Basic Blocks

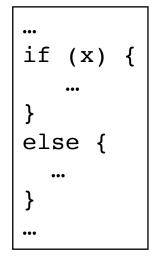
Label x:

Label y:

op1;

op2;

op3;


op4;

op5;

- A sequence of 3 address instructions
- Programs can be split into **Basic Blocks**:
 - A sequence of 3 address instructions such that:
 - There is a single entry, single exit

• *Important property*: an instruction in a basic block can assume that all preceding instructions will execute How might they appear in a high-level language?

How many basic blocks?

Two Basic Blocks

Single Basic BlockLabel_x:
op1;
op2;
op3;Image: Description of the second structureImage: Descr

Converting 3 address code into basic blocks

• Let's try an example: test 4 in HW 3:

Converting 3 address code into basic blocks

- Simple algorithm:
 - keep a list of basic blocks
 - a basic block is a list of instructions
 - Iterate over the 3 address instructions
 - if you see a branch or a label, finalize the current basic block and start a new one.

Converting 3 address code into basic blocks

pseudo code

```
basic_blocks = []
bb = []
for instr in program:
    if instr type is in [branch, label]:
        bb.append(instr)
        basic_blocks.append[bb]
        bb = []
    else:
        bb.append(instr)
```

• Local optimizations:

• Optimizes an individual basic block

• Regional optimizations:

• Combines several basic blocks

Global optimizations:

- operates across an entire procedure
- what about across procedures?

- Local optimizations:
 - Optimizes an individual basic block

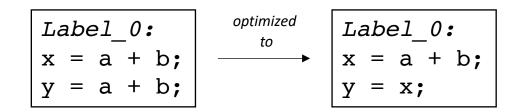
• Regional optimizations:

• Combines several basic blocks

Global optimizations:

- operates across an entire procedure
- what about across procedures?

Label_0: x = a + b; y = a + b;

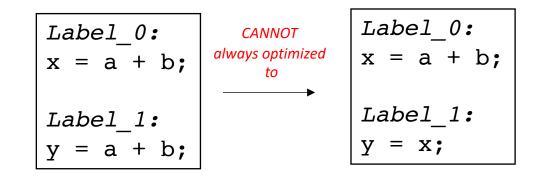

- Local optimizations:
 - Optimizes an individual basic block

• Regional optimizations:

Combines several basic blocks

Global optimizations:

- operates across an entire procedure
- what about across procedures?



- Local optimizations:
 - Optimizes an individual basic block
- Regional optimizations:
 - Combines several basic blocks

Global optimizations:

- operates across an entire procedure
- what about across procedures?

Label_0:	optimized to	Label_0:	
x = a + b;	>	x = a + b;	
y = a + b;		y = x;	

- Local optimizations:
 - Optimizes an individual basic block
- Regional optimizations:
 - Combines several basic blocks
- Global optimizations:
 - operates across an entire procedure
 - what about across procedures?

Label_0:
$$x = a + b;$$

 $y = a + b;$ optimized
toLabel_0:
 $x = a + b;$
 $y = x;$

code could skip Label_0, leaving x undefined!

Regional Optimization

… if (x) {					
 } else {					
x = a + b; }					
y = a + b;					
•••					

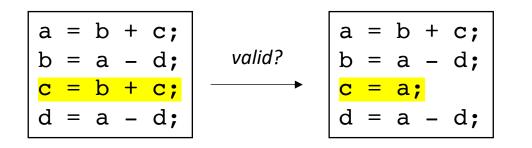
we cannot replace: y = a + b. with y = x;

Regional Optimization

•••	
if (x) {	
•••	
}	we
else {	
x = a + b;	
}	
y = a + b;	
•••	

ve cannot replace: y = a + b. with y = x;

But in this case, we can check if a and b are not redefined, then y = a + b;can be replaced with y = x;


This requires regional analysis and optimizations

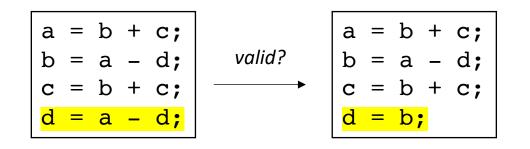
- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis


- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis

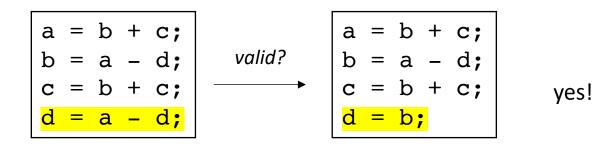
$$a = b + c;$$

 $b = a - d;$
 $c = b + c;$
 $d = a - d;$

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis



- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis



No! Because b is redefined

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis

Algorithm:

- Provide a number to each variable. Update the number each time the variable is updated.
- Keep a global counter; increment with new variables or assignments

Global_counter = 0

Algorithm:

- Provide a number to each variable. Update the number each time the variable is updated.
- Keep a global counter; increment with new variables or assignments

Global_counter = 7

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

$$\Rightarrow \begin{bmatrix} a2 &= b0 + c1; \\ b4 &= a2 - d3; \\ c5 &= b4 + c1; \\ d6 &= a2 - d3; \end{bmatrix}$$

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

$$a2 = b0 + c1;$$

$$b4 = a2 - d3;$$

$$c5 = b4 + c1;$$

$$d6 = a2 - d3;$$

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

$$a2 = b0 + c1;$$

$$b4 = a2 - d3;$$

$$c5 = b4 + c1;$$

$$d6 = a2 - d3;$$

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

$$a2 = b0 + c1;$$

$$b4 = a2 - d3;$$

$$c5 = b4 + c1;$$

$$d6 = a2 - d3;$$

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their lhs.
- At each step, check to see if the rhs has already been computed.

What else can we do?

What else can we do?

Consider this snippet:

a2	=	c 1	_	b0;
f4	=	d3	*	a2;
c5	=	b0	-	c1;
d6	=	a2	*	d3;

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?

$$x OP y == y OP x$$

What operators are commutative? Which ones are not?

Adding commutativity to local value numbering

- For commutative operators (e.g. + *), the analysis should consider a deterministic order of operands.
- You can use variable numbers or lexigraphical order

Algorithm optimization:

Algorithm optimization:

for commutative operations, re-order operands into a deterministic order

cannot re-order because - is not commutative

Algorithm optimization:

Algorithm optimization:

for commutative operations, re-order operands into a deterministic order

re-ordered because a2 < d3 lexigraphically

a2	=	c 1	_	b0; a2; c1; d3;
 f4	=	d3	*	a2;
c5	=	b0	—	c1;
d6	=	a2	*	d3;

Algorithm optimization:

Algorithm optimization:

$$a2 = c1 - b0;$$

$$f4 = d3 * a2;$$

$$c5 = b0 - c1;$$

$$d6 = a2 * d3;$$

Algorithm optimization:

$$a2 = c1 - b0;$$

$$f4 = d3 * a2;$$

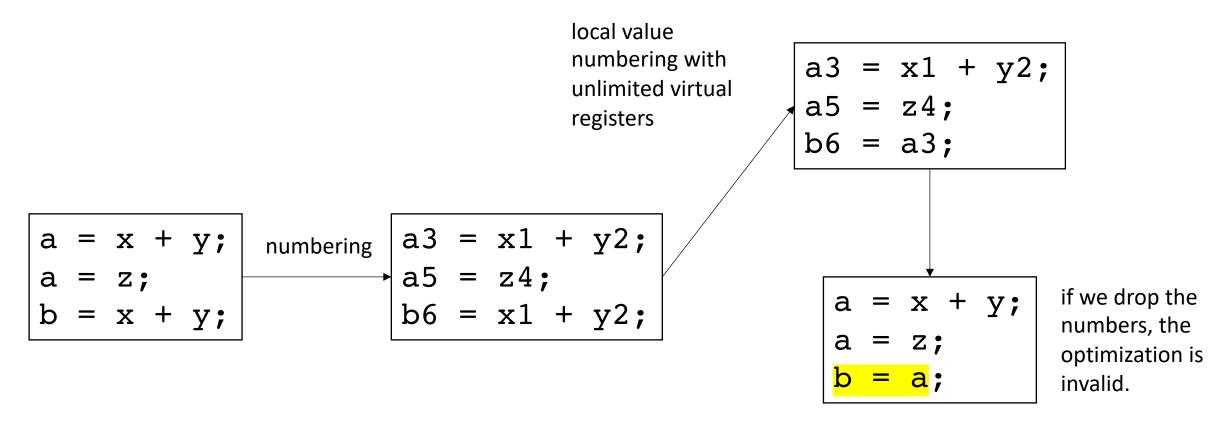
$$c5 = b0 - c1;$$

$$d6 = a2 * d3;$$

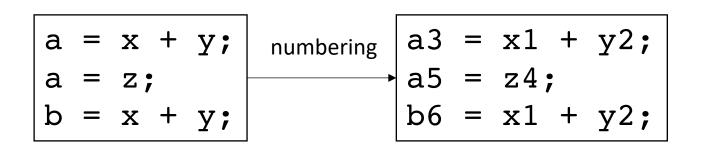
Algorithm optimization:

$$a2 = c1 - b0;$$

$$f4 = d3 * a2;$$

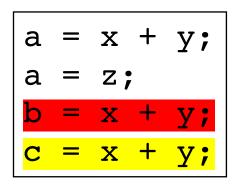

$$c5 = b0 - c1;$$

$$d6 = f4;$$


Other considerations?

- We've assumed we have access to an unlimited number of virtual registers.
- In some cases we may not be able to add virtual registers
 - If an expensive register allocation pass has already occurred.
- New constraint:
 - We need to produce a program such that variables without the numbers is still valid.

• Example:



• Solutions?

a	=	x	+	у;
a	=	z;		
b	=	X	+	у;
С	=	Χ	+	У;

• Keep another hash table to keep the current variable number

We cannot optimize the first line, but we can optimize the second

a	=	x	+	у;
a	=	z;		
b	=	X	+	у;
С	=	Χ	+	У;

a	=	x	+	у;
a	=	Z ;		
b	=	X	+	у;
С	=	X	+	У;

• Keep another hash table to keep the current variable number

 \rightarrow | a3 = x1 + y2; a5 = z4;

b6 = x1 + y2;c7 = x1 + y2;

• Keep another hash table to keep the current variable number

→ a3 = x1 + y2; a5 = z4; b6 = x1 + y2; c7 = x1 + y2;

Current_val = {
"a" : 5,
}

$$A3 = x1 + y2;$$

 $a5 = z4;$
 $b6 = x1 + y2;$
 $c7 = x1 + y2;$
 $Current_val = {
"x1 + y2" : "a3",
}$

• Keep another hash table to keep the current variable number

a3 = x1 + y2;

 $\Rightarrow \begin{vmatrix} a5 &= z4; \\ b6 &= x1 + y2; \\ c7 &= x1 + y2; \end{vmatrix}$

"b6",

• Keep another hash table to keep the current variable number

a3

• Keep another hash table to keep the current variable number

a3

a5

b6

• Keep another hash table to keep the current variable number

——**)**

a3

a5

b6

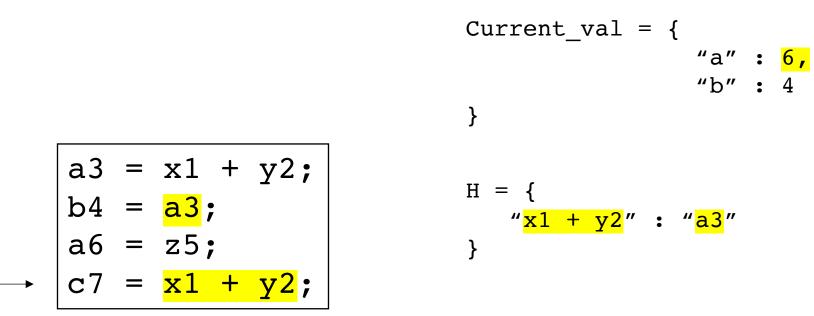
Anything else we can add to local value numbering?

Anything else we can add to local value numbering?

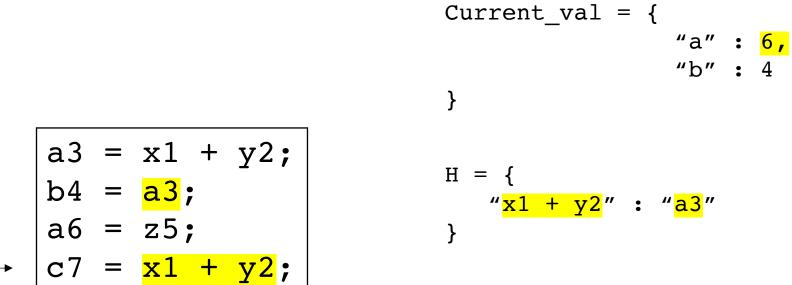
• Final heuristic: keep sets of possible values

• Final heuristic: keep sets of possible values

Current_val = {
}


a	=	x	+	у;
b	=	x	+	у;
a	=	z ;		
C	=	X	+	У;

• Final heuristic: keep sets of possible values


Current_val = {
}

• Final heuristic: keep sets of possible values

• Final heuristic: keep sets of possible values

• Final heuristic: keep sets of possible values

but we could have replaced it with b4!

——**—**

• Final heuristic: keep sets of possible values

rewind to this point a3 = x1 + y2; b4 = x1 + y2; a6 = z5; c7 = x1 + y2;


• Final heuristic: keep sets of possible values

Current_val = {

$$a3 = x1 + y2;$$

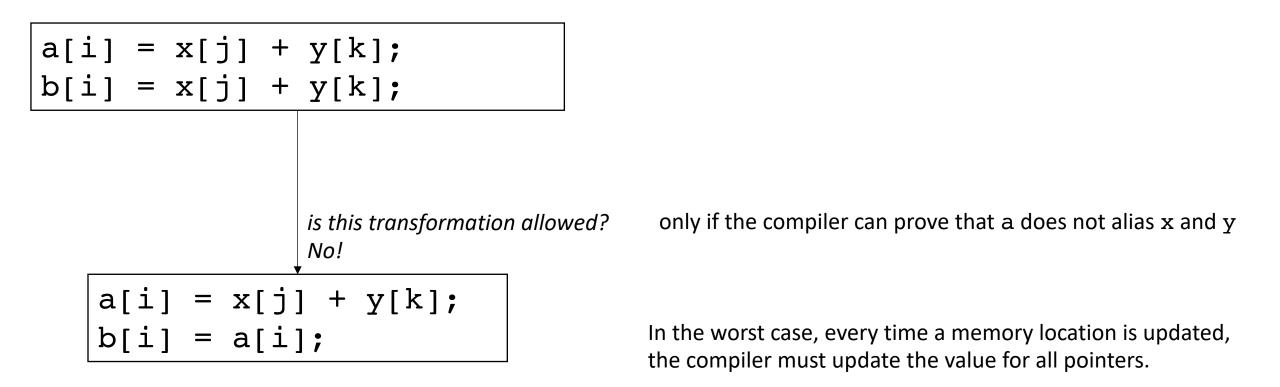
 $b4 = a3;$
 $a6 = z5;$
 $c7 = x1 + y2;$
Current_val = {
 $"a" : 3,
"b" : 4
H = {
 $"x1 + y2" : ["a3", "b4"],$
hash a list of$

possible values

• Final heuristic: keep sets of possible values

fast forward again

• Final heuristic: keep sets of possible values


again

fast forward
again

$$\rightarrow$$
 $a3 = x1 + y2;$
 $b4 = a3;$
 $a6 = z5;$
 $c7 = b4;$
 $Current_val = {
"a" : 6,
"b" : 4
}
H = {
"x1 + y2" : ["a3", "b4"]
}$

1

Consider a 3 address code that allows memory accesses

- How to number:
 - Number each pointer/index pair

- How to number:
 - Number each pointer/index pair
 - Any pointer/index pair that might alias must be incremented at each instruction

(a[i],3) = (x[j],1) + (y[k],2);(b[i],6) = (x[j],4) + (y[k],5);

- How to number:
 - Number each pointer/index pair
 - Any pointer/index pair that might alias must be incremented at each instruction

$$(a[i],3) = (x[j],1) + (y[k],2);$$

 $(b[i],6) = (x[j],4) + (y[k],5);$

compiler analysis:

can we trace a, x, y to
a = malloc(...);
x = malloc(...);
y = malloc(...);

// a, x, y are never overwritten

- How to number:
 - Number each pointer/index pair
 - Any pointer/index pair that might alias must be incremented at each instruction

in this case we do not have to update the number

compiler analysis:

```
can we trace a, x, y to
a = malloc(...);
x = malloc(...);
y = malloc(...);
```

// a, x, y are never overwritten

- How to number:
 - Number each pointer/index pair
 - Any pointer/index pair that might alias must be incremented at each instruction

$$(a[i],3) = (x[j],1) + (y[k],2);$$

 $(b[i],6) = (x[j],4) + (y[k],5);$

programmer annotations can also tell the compiler that no other pointer can access the memory pointed to by a

- How to number:
 - Number each pointer/index pair
 - Any pointer/index pair that might alias must be incremented at each instruction

$$(a[i],3) = (x[j],1) + (y[k],2);$$

 $(b[i],6) = (x[j],4) + (y[k],5);$

in this case we do not have to update the number

restrict a

programmer annotations can also tell the compiler that no other pointer can access the memory pointed to by a

- How to number:
 - Number each pointer/index pair
 - Any pointer/index pair that might alias must be incremented at each instruction

(a[i],3) = (x[j],1) + (y[k],2); (b[i],6) = (a[i],3);

Optimizing over wider regions

- Local value numbering operated over just one basic block.
- We want optimizations that operate over several basic blocks (a region), or across an entire procedure (global)
- For this, we need Control Flow Graphs and Flow Analysis
 - We may have time to discuss this later in the module

See everyone on Friday

• More about optimizations!