CSE110A: Compilers

May 24, 2023

Topics:
e Start of Module 4

Announcements

 HW 4 is out

 Due on Monday; get started and use office hours!

* Working on grading HW 2 and HW 3: expect grades by the end of the
week

* One more homework left on optimizations

No quiz from last time

Start of module 4: optimizations

Discussion

* What are compiler optimizations?

* Why do we want compiler optimizations?

Discussion

* What are compiler optimizations?
* automated program transforms designed to make code more optimal

e optimal can mean different things

* code optimized for one system might be different for code optimized for a different
system

* we can optimize for speed, for energy efficiency, or for code size. What else?

* Why do we want the compiler to help us optimize?
e So we can write more maintainable/portable code

* So we don’t have to worry about learning nuanced details about every
possible system

Discussion

* What are some compiler optimizations you know about?

Discussion

* What are some compiler optimizations you know about?

for (int 1 = 0; i < 10; i++) {
X =X+ 1;

}

loop unrolling

for (int 1
X =X+ 1;

9; 1< 10; i++) {

Discussion

* What are some compiler optimizations you know about?

for (int 1 = 0; i < 10; i++) {
X =X+ 1;

}

loop unrolling

for (int 1
X =X+ 1;

9; 1< 10; i++) {

int foo() {
int i,7j,k;
i = 10;
Jj =1,
k = 3;
return k;

}

constant propagation

int foo() {
int i,7j,k;
return 10;

}

Discussion

* What are some compiler optimizations you know about?

for (int 1 = 0; i < 10; i++) {
X =X+ 1;

}

loop unrolling

for (int 1
X =X+ 1;

9; 1< 10; i++) {

What does this save us?

Discussion

* What are some compiler optimizations you know about?

for (int 1 = 0; i < 10; i++) {
X =X+ 1;

}

loop unrolling

for (int 1 = 0; i < 10; i++) {
X =X+ 1;

What does this save us?

optimizations at one stage can enable optimizations

at another stage:

for (int 1 =
X =X + 2;

}

9; 1 < 10; i+=2) {

provides a bigger window for local analysis

Discussion

* What are some compiler optimizations you know about?

let’s do a few more
Function inlining

int add(int x, int y) {
return x + y,;

} int foo(int x, int y, int z) {

return X + vy,

int foo(int x, int y, int z) { }
return add(x,y);

}

What does this save us?
code size? speed? the ability to debug? local regions to optimize more?

Discussion

* What are some compiler optimizations you know about?

There are many more! This is an active area of research and development

For a rough metric:

git effort shows activities on different files and directories

clang C++/C parser: 3.5K commits
clang AST: 8.7K commits
LLVM transforms/optimizations: 30K commits

The transformation part of the code base
has the most activity by far

Discussion

* How do you enable compiler optimizations?

Discussion

* How do you enable compiler optimizations?

* most C/++ compilers
* optimizing for speed
* -00,-01,-02,-03
* what about 04?
e optimizing for size
* -Os, -0z
* relax some constraints (especially around floating point):

e -Ofast
* Godbolt example

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Discussion

* How do you enable compiler optimizations?

* most C/++ compilers
* optimizing for speed
* -00,-01,-02,-03
* what about 04?
e optimizing for size
* -Os, -0z
* relax some constraints (especially around floating point):

e -Ofast
* Godbolt example

Does -03 actually make a difference?

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Discussion

. Gtatistically Sound Performance Evaluation
Charlie Curtsinger Emery D. Berget
Department of Computer Science
University of Massachusetts Ambherst
Amberst, 003
{char\ie,emery}@cs.umass.edu
2013 research paper

“the perf

Optimizatzzzan?e impact of -03 o

rando ions is indistingui ver -02
m noise.” nguishable from

Discussion

* What are some of the biggest improvements you’ve seen from
compiler optimizations?

Discussion

* What are some of the biggest improvements you’ve seen from
compiler optimizations?

* compiler optimizations are great at well-structured, regular loops and
arrays

* Example: adding together two matrices

Discussion

* What kind of transforms on your code is the compiler allowed to do?

* many_add example

Discussion

* What kind of transforms on your code is the compiler allowed to do?
* many_add example

* Why did we get such a dramatic increase?

Discussion

* What kind of transforms on your code is the compiler allowed to do?
* many_add example

* Why did we get such a dramatic increase?
* Programs must maintain their input/output behavior
e Hard to precisely define (and still being discussed in C++ groups)
* input/output can be files, volatile memory, console log, etc.

Discussion

* Extreme example

void foo(int * arr, int n)
{
int i, j;
for (1 =0; 1< n - 1; i++)
for (j =0; j<n-1-1; j++)
if (arr[j] > arr[]j + 1]) {
tmp = arr[j];
arr[j] = arr[j + 1]);
arr[j + 1] = tmp;

code from https://www.geeksforgeeks.org/

int

}

p(int arr[], int start, int end)

int pivot = arr[start];

int count = 9;
for (int i = start + 1; i <= end; i++) {
if (arr[i] <= pivot)
count++;

}

int pivotIndex = start + count;
swap(arr[pivotIndex], arr[start]);

int i = start, j = end;
while (i < pivotIndex && j > pivotIndex) {

while (arr[i] <= pivot) {
it++;

}

while (arr[j] > pivot) {
3=
i

if (i < pivotIndex && j > pivotIndex) {
swap(arr[i++], arr[j--1);

}
}

return pivotIndex;

void foo(int *arr, int n)

{

is this transform legal?

if (start >= end)
return;

int p = p(arr, m, n);
foo(arr, start, p - 1);

foo(arr, p + 1, end);

Discussion

* Extreme example

bubble sort

void foo(int * arr, int n)
{
int i, j;
for (1 =0; 1< n - 1; i++)
for (j =0; j<n-1
if (arr[j] > arr[]
tmp = arr[j];
arr[j] = arr[j

Yes this transform
would be legal!

Could any compiler figure it out?
currently unlikely..

This is a technique called

“super optimizing” and it is
getting more and more interest

- 15 ++)
+ 1]) {

+ 1]);

arr[j + 1] = tmp;

code from https://www.geeksforgeeks.org/

is this transform legal?

int p(int arr[], int start, int end)

int pivot = arr[start];
int count = 9;
for (int i = start + 1; i <= end; i++) {

if (arr[i] <= pivot)
count++;
¥

int pivotIndex = start + count;
swap(arr[pivotIndex], arr[start]);

int i = start, j = end;
while (i < pivotIndex && j > pivotIndex) {

while (arr[i] <= pivot) {

it++;
}

while (arr[j] > pivot) {
3=
}

if (i < pivotIndex && j > pivotIndex) {
swap(arr[i++], arr[j--1);
}

}

return pivotIndex;

}

void foo(int *arr, int n)

{

if (start >= end)
return;

int p = p(arr, m, n);
foo(arr, start, p - 1);

foo(arr, p + 1, end);

quick sort

Moving on

/ooming out again: Compiler Architecture

input
program

string

-

.

parsing

creates
structure

‘ Front end ‘

compiler

Optimizations

—

voptimizations

build on each other

produces
executable code

Back

end

code gen

=)

/

IRs and type inference type inference are at the boundary of parsing and optimizations

machine
code

mpUt - Lexical
program Analysis

Syntactic

Analyzer

token stream

What IRs do we have at this point?

syntax tree

IR programs

IR Analysis/
Optimization

Intermediate
code gen

target code
gen

target code
optimizations

machine
code

loop!

optimized IR
program

loop!

IR programs

Input - Lexical Syntactic Intermediate IR Analysis/ loop!
program Analysis Analyzer code gen Optimization '
optimized IR
token stream syntax tree orogram
What IRs do we have at this point? target code
gen
3 address code
virtual_reg ; target code loop!
virtual_reg ’ optimizations p:

virtual_reg ;
vr@ = int2vr(5);
_hew_name@ = vro;
vrl = int2vr(6);

machine
code

IR programs

Input - Lexical Syntactic Intermediate IR Analysis/ loop!
program Analysis Analyzer code gen Optimization '
optimized IR
token stream syntax tree orogram
What IRs do we have at this point? target code
gen
3 address code AST
virtual_reg ; target code
virtual reg ; AST<+,float> optimizations loop!

virtual_reg ;
vrd = int2vr(5);

_hew_name@ = vro; .
vrl = int2vr(6); AST<+,int> AST<5.5, float>

/\ machine

AST<x, int> AST<y, int> code

Implicit parse tree

if else statement := IF LPAR expr RPAR statement ELSE statement

if (program0) {

programl
}
else { .pe
program2 We have several structures to utilize
} to analyze and optimize programs!

What IRs do we have at this point?

3 address code AST

virtual re ;
virtual:reg ; AST<+,float>

virtual_reg ;
vr@ = int2vr(5);

_hew_name@® = vro; .
vrl = int2vr(6); AST<+,int> AST<5.5, float>

T T

AST<X, int> AST<y, int>

IR programs

IR Analysis/
loop!

Optimization ©0op
optimized IR
program

target code

gen
target code loop!

optimizations

machine
code

Optimization categories

* Machine-independent - these optimizations should work well across
many different systems

* Examples?

* Machine dependent - these optimizations start to optimize the code
for a given system

* Examples?

Optimization categories

* Machine-independent - these optimizations should work well across
many different systems
 Examples?

* All the examples we looked at before seem like they will help across many
systems

* Machine dependent - these optimizations start to optimize the code
for a given system
* Examples?
* loop chunking for cache line size and vectorization.
* instruction re-orderings to take advantage of processor pipelines.
* fused multiply-and-add instructions

Optimization categories

* Machine-independent - these optimizations should work well across
many different systems
* Examples?

* All the examples we looked at before seem like they will help across many
systems

* In this module we will be looking at machine-independent
optimizations. Module 5 might start to look at others

* What are the pros of machine-independent optimizations?

Optimization categories

Next category level is how much code we need to reason about for the
optimization.

* local optimizations: examine a “basic block”, i.e. a small region of
code with no control flow.
* Examples?

* Regional optimizations: several basic blocks with simple control flow.
 Examples?

* Global optimization: optimizes across an entire function

Optimization categories

* local optimizations: examine a “basic block”, i.e. a small region of
code with no control flow.

* Regional optimizations: several basic blocks with simple control flow

* Global optimization: optimizes across an entire function

Discussion:

* What are the pros and cons of each?
* Why don’t we go further than functions?

Optimization categories

* local optimizations: examine a “basic block”, i.e. a small region of
code with no control flow.

* Regional optimizations: several basic blocks with simple control flow

* Global optimization: optimizes across an entire function

For this module:
* We will look at two optimizations in detail:
* Alocal optimization: Local value numbering

* A regional optimization: Loop unrolling
* We will implement both as homework
* We will discuss several other optimizations and analysis

Basic blocks

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:
* There is a single entry, single exit

Single Basic Block

. . Label x:
* Important property: an instruction opl;
in a basic block can assume that all op2;
preceding instructions will execute gi3iabel .

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label_ x:
el opl;
. . Label x: .
o lmportant property: an instruction opl: ggir

in a basic block can assume that all op2;

preceding instructions will execute oP3;

Label y:
br label z;

op4;
op5;

How might they appearin a

| R P rog ra m St |" u Ct u re Z)i(gaf;lsl\;esl?language? What are some
* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label x:
bel opl;
. . Label Xx: .
* Important property: an instruction opl; ggi:
in @ basic block can assume that all op2; '
I I i i op3; Label vy:
preceding instructions will execute br 1abel z: Lake ¥

op5;

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:

* A sequence of 3 address instructions such that:

* There is a single entry, single exit

* Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

How might they appearin a
high-level language?

How many basic blocks?

If (x)

}

else {

}

{

Single Basic Block

Label x:
opl;

op2;

op3;

br label z;

Two Basic Blocks

Label x:
opl;
op2;
op3;

Label y:
op4;
op5;

Converting 3 address code into basic blocks

* Let’s try an example: test 4 in HW 3:

Converting 3 address code into basic blocks

e Simple algorithm:
* keep a list of basic blocks
* a basic block is a list of instructions

e |terate over the 3 address instructions

* if you see a branch or a label, finalize the current basic block and start a new
one.

Converting 3 address code into basic blocks

pseudo code

= []
= []
instr program:
instr type [branch, labell]:
bb.append(instr)
basic_blocks.append[bb]
= []

bb.append(instr)

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e

optimized

to
—

Label O0:
X = a + b;
y = X;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

O O

n
o o

Label O0:
X = a + b;

Label 1:
y = a + b;

optimized
to
—_

CANNOT
always optimized
to
—_

Label 0:
X = a + b;

Label 1:
y = X;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:
X = a + b;

Label 1:
y = a + b;

code could skip Label O,
leaving x undefined!

optimized

to
e

CANNOT
always optimized
to
—_

Label O0:
X = a + b;
y = X;

Label 0:
X = a + b;

Label 1:
y = X;

br Label 1;

Label O0:

X = a + b;

Label 1:

y = a + b;

Regional Optimization

if (x) |
} we cannot replace:
else { y=a+b.

X = a + b; with

y=X

Regional Optimization

if (x) {
} we cannot replace:
else { y=a+b.
X = a + b; with
} y=Xx
y = a + b;

X = a + b;
if (x) A

But in this case, we can check if a
} and b are not redefined, then
else { y=a+b

can be replaced with

} y=Xx
y = a + b;

This requires regional analysis and optimizations

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

O o9 O
I+ 1 +
Q. Q Q0

Q. Q O 9w

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;
b =a - d; valid? b =a - d;
c=b+c;| —* |c = a;

d = a - d; d =a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

C; a b + c;

d; valid? b=a-4d; No! Because b is redefined

0 Q 0o w
o nn
O oo O

I+ 1 +
Q
Q
i
o))

a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;
b =a - d; valid? b=a-d:;
c=b+c;| " |c=Db+ c;
d =a - d; d = b;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis

a=>b + c; a=>b + c;

b =a - d; valid? b=a-d:;
c=b+c;| — > |c=Db+ c; yes!
d =a - d; d = b;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a=>b + c; Global_counter =0
b =a - d;
c = b + c;
d = a - d;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a2 = b0 + cl; Global_counter =7
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; o
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

—|az = b0 + cl; t “b0 + cl” : “a2”
b4 = a2 - d3; } '
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; t “DO + cl” : “a2”
— |b4 = a2 - d3; } '

cS = bd + cl;

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H =
a2z = b0 + clj “b0 + cl” “a2",
— |b4d = a2 - d3; “a2 - d3” : "b4",
c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H = {
a2z = b0 + clj “b0 + cl” “a2",
bd = a2 - d3; “a2 - d3” : "ba",
—— |c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; i WpO 4 ol : “g2n mismatch due to

b4 = a2 - d3; va2 - d3" : "bdr, numberings!
—— |c5 = bd + cl; }

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,
bd = a2 - d3; “a2 - d3” : "b4",

_ »|c5 = b4 + Cl; “b4d + cl” : “c5”,
d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

cS5 = bd + Cl; “b4d + cl” : “c5”,
_ . |d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

c5 = bd + cl; “b4 + cl” : "e57, match!
_ . |d6 = b4; }

What else can we do?

What else can we do?

Consider this snippet:

az2
f4
ch
dé6

cl
d3
b0
a2

- b0;

az2;

- cl;

d3;

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?
X OP y ==y OP x

What operators are commutative? Which ones are not?

Adding commutativity to local value
numbering

* For commutative operators (e.g. + *), the analysis should consider a
deterministic order of operands.

* You can use variable numbers or lexigraphical order

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

— a2 = cl - b0; ?z '
fd = d3 * a2;
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

cannot re-order because - is not commutative

f4 = d3 * a2; }
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl = bO” : “a2”
—— | f4 = d3 * a2; } '

c5 = b0 - cl;

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

re-ordered because a2 < d3 lexigraphically

az = cl - b0; t “cl - b0” : “a2”
— | £f4 = d3 * a2; "a2 * d3” “f4":

c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; “cl - b0” : “a2",

f4 = d3 * a2; "a2 * d3" : “f4r,
——|c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,
f4 = d3 * a2; "a2 * d3” : “f4",

—|c5 = b0 - cl; "b0 - cl “c5",
d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,

f4 = d3 * a2; "a2 * d3” : “f4",

c5 = b0 - cl; "b0 - cl” : “c5”,
—|d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

_ H = {
a2 - C]. bO, ucl - bO" . ua2",
f4 = d3 * a2; "a2 * d3” : “f4",
CS — bO — Cl; "bO - Cl" : ”C5",
—|d6 = f4; '

Other considerations?

Local value numbering w/out adding registers

e We've assumed we have access to an unlimited number of virtual
registers.

* In some cases we may not be able to add virtual registers
* |f an expensive register allocation pass has already occurred.

e New constraint:

* We need to produce a program such that variables without the numbers is
still valid.

Local value numbering w/out adding registers

* Example:
a = x + vy,
a = z;

b =x+vy;

numbering

local value
numbering with
unlimited virtual

registers
a3 = x1 + y2;
ab = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;
a = x + vy;
a = 2z;
b = a;

if we drop the
numbers, the
optimization is
invalid.

Local value numbering w/out adding registers

e Solutions?
a = X *+ ¥Y; | numbering
a = z;
b =x+vy;

a3
ab
b6

X1 + y2;
z4
X1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

o))

X + vy
We cannot optimize the first
line, but we can optimize the

BEEEEE | cconc

C X t+ vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

First we number

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a3 = x1 + y2;
ab = z4;

b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {

}

— la3 = x1 + y2; H = {
a5 = z4; '
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
— a3 = x1 + y2; H = {
a5=z4; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— | c7 = bb6;

Anything else we can add to local value
numbering?

Anything else we can add to local value
numbering?

* Final heuristic: keep sets of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

X+y;
X+y;

Q o O o
1 [| I |
~ m
I

X+y;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

a3 = x1 + y2;

bd = x1 + y2; o
a6 = z5;

c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
bd = a3 H={ but we could have
! “x1l + y2" @ *a3” replaced it with b4!
a6 = z5; }
— |7 = X1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall
}
rewind to
this point a3 = xl1 + Yz; H = {
— > |bd = x1 + y2; ixl + y2r a3
a6 = z5; }
c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
ua" 3,
"b" 4
}
a3 = x1 + y2; {
H =
EE— e °
b4 a3, uxl + y2" . [ua3", ub4"],

a6 = z5; }
c7 = x1 + y2; hash a list of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
b4 = a3; S,
fast forward - a’; “x1 + y2" : [“a3", "b4"],
again a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2; {
H =
fast forward bd = a3; “x1 + y2" : ["a3", "b4"],
again a6 = z5; }
— |c7 = bé;

Local value numbering: Memory

e Consider a 3 address code that allows memory accesses

afi] = x[]J] + y[k];
b[1] = x[]] + y[k];
is this transformation allowed? only if the compiler can prove that a does not alias x and y
No!
a[i] = x[]J] + y[k];
b[i] = a[i]; In the worst case, every time a memory location is updated,
- the compiler must update the value for all pointers.

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

(a[i1,3) = (x[31,1) + (y[k1l,2);
b[i1] = x[]] + y[k];

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (x[]],4) + (y[k]l,5);

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i1,3) = (x[31,1) + (y[k1l,2);

can we trace a, X,y to

(b[i],6) = (x[J1,4) + (y[k1,5); e tea
x = malloc(..);
y = malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i],3) = (x[31,1) + (y[k1,2);
(b[i1,6) = (x[31,1) + (y[kl,2); A A

X malloc(..);

in this case we do not have to update the number
Yy malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1],3) = (x[J1,1) + (y[k],2);
(b[1],6) = (x[]J1,4) + (vI[k],5); programmer annotations can also tell

the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1]1,3)
(b[1]1,6)

= (x[J1,1) + (y[kl,2);
= (x[J],4) + (v[k]l,5);

in this case we do not have to update the number

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (a[1],3);

Optimizing over wider regions
* Local value numbering operated over just one basic block.

* We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

* For this, we need Control Flow Graphs and Flow Analysis
* We may have time to discuss this later in the module

See everyone on Friday

* More about optimizations!

