CSE110A: Compilers ST

May 19, 2023

Topics: CFG

* Finishing up translation into 3 address code _— \W

* homework review
\/

3 address code

store 132 0, ptr %2

%3 = load 132, ptr %1
%4 = add nsw i32 %3, 1,
store 132 %4, ptr %1
%5 = load 132, ptr %2




Announcements

* HW 4 is out:
e Due on the 29th
* Get started early; it is a big assignment!
 Earlier office hours are less busy than office hours close to the deadline

* Midterm grades are out
* Come see me in office hours if you want to review your test
* We will go over the test on Monday

* HW 2 and HW 3 grades are on the way



Announcements

Schedule:
* Hopefully we will finish module 3 today
* Midterm review on Monday

* Moving to module 4 on Wednesday






Quiz

How many virtual registers does the following expression need?

int a, X, v;

a=(x+1)*y-1)/2.0;



Discussion

* two ways to do this: First

a=((x+1) *y - 1) / 2.0f;

vr0 = X + 1

vrl = vr0 * y

vr2 = vrl -1

vr3 = int2float(vr2)
vrd = vr3 / 2.0f
vr5 = float2int(vr4d)
a = vrb

Are all of these necessary?

Assumptions about the IR?



Discussion

* two ways to do this: Second way:

use Godbolt

use clang with flag: —emit-11lvm

int foo_int(int x, int y) {
return ((x + 1) *y - 1) / 2.0f;
}

%5
%6
%7
%8
%9
%10
%11
%12

load 132, ptr %3, align 4, !dbg 120
add nsw i32 %5, 1, !dbg !21
load 132, ptr %4, align 4, !dbg 122
mul nsw i32 %6, %7, !dbg 123
sub nsw i32 %8, 1, !dbg !24

sitofp 132 %9 to float, ldbg 125

fdiv float %10, 2.000000e+00, !dbg !26
fptosi float %11 to 132, !dbg 125




Discussion

* two ways to do this: Second way: use Godbolt

use clang with flag: —emit-11lvm

int foo_int(int x, int y) {
return ((x + 1) *y - 1) / 2.0f;
}

= i ) 7 > i >
%6 = add nsw 132 %5, 1, ldbg 12

J J J *
%8 = mul nsw 132 %6, %7, !dbg 123
%9 = sub nsw 132 %8, 1, !dbg !24

%10 = sitofp 132 %9 to float, ldbg 125
%11 = fdiv float %10, 2.000000e+00, !dbg !26
%12 = fptosi float %11 to i32, !dbg 125

we probably wouldn’t count loads for our purposes




Quiz

How many labels do you need for the following expression?

int x, y;

if (x==0){

} else if (y>1) {

lelse {



int x, y;

if (x==0){

} else 1f (y>1) { where do we need the labels?
} else {

}



int x, y;

if !(x == 0) goto ELSERE;

goto end;

if !(y>1) goto else:

goto end;
else:

end:

where do we need the labels?



Quiz discussion

* What about Godbolt?



Quiz discussion

* Follow up question:
 How would we extend our language to support “else if”?



Quiz

The number of virtual registers is equal to the number of nodes in the AST

(O True

O False




Converting AST into Class-IR

int x;

int y;

float w;

w=x+y + 5.5 After type inference

We will start by adding a new

AST<+,float, vr5> member to each AST node:

AST<int2float, float, vr3>

/ Each node needs a distinct virtual
AST<+,int, vr2> AST<5.5, float, vr4> register

T

AST<x, int, vrO> AST<y, int, vr1>

A virtual register



Discussion

* The easiest (and most common way) is to allocate a virtual register for
each node

* You might not need nodes for some variables or literal
* depends on the IR and type system

* You could potentially re-use virtual registers, but typically this isn’t
done at this point.



Converting AST into Class-IR

int x;

int y;

float w;
w=x+y + 5.5

AST<+,float, vr2> potentially registers could be reused if they

are not used again
AST<int2float, float, vrO>

/

AST<+,int, vr2> AST<5.5, float, vr4>

T

AST<x, int, vrO> AST<y, int, vr1>



Qu

1Z

Discuss a few optimizations that you could imagine doing as you convert an AST into 3 address code



Quiz

Discuss a few optimizations that you could imagine doing as you convert an AST into 3 address code

Loop unrolling
computing constants (e.g., 5 + 6)



Review

e Class IR:

e or ClassleR

* Converting an AST into ClassleR



Class-IR

Inputs/outputs (10): 32-bit typed inputs
e.g.:1nt x, int y, float z

Program Variables (Variables): 32-bit untyped virtual register
given as vrX where X is an integer:
e.g.vr0, vrl, vr2, vr3 ..

we will assume input/output names are disjoint from virtual register
names



Class-IR

binary operators:
dst = operation(op0, opl);

operations can be one of:
[add, sub, mult, div, eq, 1lt]

each operation is followed by an 1 or £, which
specifies how the bits in the registers are
interpreted



Class-IR

binary operators:
dst = operation(op0, opl);

operations can be one of:
[add, sub, mult, div, eq, 1lt]

all of dst, op0, and opl must be untyped virtual
registers.



Class-IR

binary operators:
dst = operation(op0, opl);

Examples:

vr0 = addi(vrl, vr2);
vr3 = subf(vr4d, vrb5);
B = multf(vr0, vrl); not allowed! We'll talk about how to

do this using other
vr0 = addi(vrl, @); not allowed! instructions



Class-IR

Control flow
branch(label);
* branches unconditionally to the label

bne(op0, opl, label)
*1f op0 is not equal to opl then branch to label
* operands must be virtual registers!

beqg(op0, opl, label)
* Same as bne except it 1is for equal



Class-IR

Assignment
vr0) = vrl

one virtual register can be assigned to another



Class-IR

Assignment
vr0) = vrl

one virtual register can be assigned to another

Examples:
vr0 = ll; not allowed

vrl = B; not allowed

we



Class-IR

unary get untyped register
dst = operation(op0);

operations are: [int2vr, float2vr]
Example:

Given 10: int x and float y

vrl = int2vr(x);
vr2 = float2vr(2.0);



Class-IR

unary get typed data
dst = operation(op0);

operations are: [vr2int, vr2float]

Example:

Given 10: int x and float y

P4
I

= vr2int(vrl);
y = vr2float(vr3);



Compiler pragmatics

* New terminology | learned recently:
* Implementation details

* We need to talk about different ID types (IO, VRs)
* We need to talk about scopes



Class-IR

unary conversion operators:
dst = operation(op0);

operations can be one of:
[vr int2float, vr float2int]

converts the bits 1n a virtual register from one
type to another. op0 and dst must be a virtual
register!



Class-IR

unary conversion operators:
dst = operation(op0);

Examples:

vr0 vr int2float(vrl);
vr2 = vr float2int () ; not allowed!



Two different ID nodes

Gets compiled into an untyped virtual register

class ASTVarIDNode(ASTLeafNode):

def __init__ (self, value, value_type):
super().__init__ (value)

self.node_type = value_type

Gets compiled into a typed 10 variable

class ASTIOIDNode(ASTLeafNode):

def __init__ (self, value, value_type):
super().__init__ (value)

self.node_type = value_type



Two different ID nodes

What we are compiling

void testd(float &x) {

int 1;

for (i =0; 1i<100; i =1+ 1) {
X = 13

¥

}




Class-IR

What we are compiling

void testd(float &x) {

int i}
for (i =0; i< 10; 1i =
X = 1;
}
}

i+ 1) {

int main() {
int a = 0;
testl(a);
cout << a << endl;
return 0;

IO variables

What does this print?



What we are compiling O variables

void testd(float &x) {

int i}
for (1 =0; i<100; 1i =1 + 1) {
X = 1;
}
}

Every time you access an 10 variable,
you need to convert it to a vr first
using float2vr or int2vr

class ASTIOIDNode(ASTLeafNode):

def three_addr_code(self):
if self.node_type == Types.INT:
return "%s = int2vr(%s);" % (self.vr, self.value)
1if self.node_type == Types.FLOAT:
return "%s = float2vr(%s);" % (self.vr, self.value)



What we are compiling O variables

void testd(float &x) {

int i}
for (1 =0; i<100; 1i =1 + 1) {
X = 1;
}
}

Every time you access a program
variable, it does not need to be class ASTVarIDNode(ASTLeafNode):
converted.

def three_addr_code(self):

Because its value is a virtual register,
’ return "%s = %s;" % (self.vr, self.value)

you can even just use its value as its
virtual register



building an expression AST, we parse a unit at the base

unit := ID

cos How do we know whether to make an 10 node or a Var node?
{
id name = self.to match.value
data type = # get type from symbol table
eat (“ID")
return ASTIDNode(id name, data type)
}

Previously we had just one ID node



building an expression AST, we parse a unit at the base

unit := ID
.« o How do we know whether to make an 10 node or a Var node?

id name = self.to match.value

data type = # get type from symbol table
eat (“ID")

return ASTIDNode(id name, data type)



building an expression AST, we parse a unit at the base

unit := ID

cos How do we know whether to make an 10 node or a Var node?
{
id name = self.to match.value
id data = # get id data from the symbol table
eat (“ID")
return ASTIDNode(id name, ...)
}

id_data should contain:
id_type: 10 or Var
data_ type: int or float



building an expression AST, we parse a unit at the base

unit := ID
.« o How do we know whether to make an 10 node or a Var node?

id name = self.to match.value
id data = # get id data from the symbol table
eat (“ID")
if (id data.id type == IO)
return ASTIOIDNode(id name, id data.data type)
else
return ASTVarIDNode(id name, id data.data type)

id_data should contain:
id_type: 10 or Var
data_ type: int or float



Getting back to our statements:

statement := declaration statement
assignment statement

if else statement
block statement

for loop statement

When we declare a variable, we need
to mark it as a program variable in
the symbol table



Getting back to our statements:

statement := declaration statement
assignment statement
if else statement
block statement

for loop statement

We need to use symbol table data for
something else. What?



Getting back to our statements:

statement := declaration statement
assignment statement
if else statement
block statement

for loop statement

We need to use symbol table data for
something else. What?

Scopes! Class IR has no {}s, so we need to manage scopes



What does y hold?



Scopes

int Xx;

int vy;

X = 5;

{ How can we get rid of the {}'s?
int Xx;

X
I
o

What does y hold?



Scopes

Let’s walk through it with a symbol table

int Xx;



Let’s walk through it with a symbol table

HTO

symbol table hash table stack




Scopes

rename

int b
int vy;
X = 5;

Let’s walk through it with a symbol table

HTO

make a new unique name for x

x: (INT, VAR, “x 0")

symbol table hash table stack




Let’s walk through it with a symbol table

HTO

x: (INT, VAR, “x 07)

symbol table hash table stack




Scopes

int
int

X

rename

Let’s walk through it with a symbol table

HTO

make a new unique name fory

X
y

(INT, VAR, “x 0")
(INT, VAR, “y 0")

symbol table hash table stack




Scopes

search Let’s walk through it with a symbol table

int ;
int ;
X = 5;
{

int x;

X = 0;

y = X;
¥

HTO x: (INT, VAR, “x 0")

y: (INT, VAR, “y 0”)

symbol table hash table stack



Scopes

replace Let’s walk through it with a symbol table

_ with
int ; new name
int ;
X_ 0 = 5;
{

int x;

X = 0;

y = X;
¥

HTO X: (INT, VAR, "X_O )

y: (INT, VAR, “y 0”)

symbol table hash table stack



Let’s walk through it with a symbol table

new scope. Add x with a new name

HT1 x: (INT, VAR, “x 1")
HTO x: (INT, VAR, “x 0")
y: (INT, VAR, “y 0")

symbol table hash table stack



Let’s walk through it with a symbol table

new scope. Add x with a new name

HT1 x: (INT, VAR, “x 1")
HTO x: (INT, VAR, “x 0")
y: (INT, VAR, “y 0")

symbol table hash table stack



Let’s walk through it with a symbol table

new scope. Add x with a new name

lookup
HT1 x: (INT, VAR, “x_1")
HTO x: (INT, VAR, “x 0")
y: (INT, VAR, “y 0")

symbol table hash table stack



Let’s walk through it with a symbol table

new scope. Add x with a new name

lookup
HT1 x: (INT, VAR, “x_1")
HTO x: (INT, VAR, “x 0")
y: (INT, VAR, “y 0")

symbol table hash table stack



Let’s walk through it with a symbol table

new scope. Add x with a new name

lookup
HT1 x: (INT, VAR, “x_1")
HTO x: (INT, VAR, “x 0")
y: (INT, VAR, “y 0")

symbol table hash table stack



Scopes

Let’s walk through it with a symbol table

int ;
int ;
X_ 0 = 5;
{ . new scope. Add x with a new name
int ;
X_1=6; lookup
y_ 0 = x_1;
} y/7)
HT1 x: (INT, VAR, “x_1")
HTO X: (INT, VAR, x 07")
y: (INT, VAR, “y 0")

symbol table hash table stack



Scopes

Let’s walk through it with a symbol table

int ;
int ;
X_ 0 = 5;
{ . new scope. Add x with a new name
int ;
X 1= 06;
y_ 0 = x_1;
} y/7)
HT1 x: (INT, VAR, “x_1")
No more need for {} HTO x: (INT, VAR, “x 0")
y: (INT, VAR, “y 0")

symbol table hash table stack



Scopes

Let’s walk through it with a symbol table

int ;
int ;
X 0 = 5;
int ;
X 1 = 06;
y_0 = x_1;
HT1
No more need for {} HTO

new scope. Add x with a new name

X

(INT, VAR, “x 1")

(INT, VAR, “x 0")
(INT, VAR, “y 0")

=

symbol table hash table stack



i

int

X

<

What happens with multiple scopes?



Class-IR

Remind ourselves what we are compiling

void testd(float &x) {
int
for
X = X + 1;

}

) We only need new names for program
(’i - 0: i<100: i =1i + 1) { variables, not for IO variables
’ ’

}




building an expression AST, we parse a unit at the base

unit := ID
.« o How do we know whether to make an 10 node or a Var node?

id name = self.to match[1]
id data = # get id data from the symbol table
eat (“ID")
if (id data.id type == IO)
return ASTIOIDNode(id name, id data.data type)
else
return ASTVarIDNode(id data.new name, id data.data type)

id_data should contain:
id_type: 10 or Var

data_ type: int or float
hew_name: new unique name



Look at homework



See everyone on Monday

* Reviewing midterm



