CSE110A: Compilers ST

May 10, 2023

Topics: CFG

* ASTs / \W

* parse trees into ASTs
* type checking

3 address code

store 132 0, ptr %2

%3 = load 132, ptr %1
%4 = add nsw i32 %3, 1,
store 132 %4, ptr %1
%5 = load 132, ptr %2

Announcements

e Midterm is over!

* We will start grading early next week and aim to scores released by next
Friday

Announcements

* HW 3

* Released on Monday
» 7 days to do the homework (due May 15)

* Implementing a recursive descent parser for your grammar
* Implementing a symbol table

* You will need to implement a scanner
e Use your HW 1 solution or the exact match scanner (given in HW 1)
* You will need a grammar
* Either use your grammar or the provided grammar (Rithik provided on Piazza)

* Come to office hours or post on Piazza for help!

Announcements

* HW 3 clarification: You do not need to return anything from your
parser!
* If the input program satisfies the grammar then you return without issue

* |f it does not, then you throw an exception

e Scanner exception if you cannot create a token
* Parser exception if the input violations the grammar
* Symbol table exception if a variable is used outside of a scope it is declared

* HW 4 will be creating an IR inside your parser.

Quiz

Parse tree is an Abstract Syntax Tree

(O True

O False

Quiz

If you are writing a compiler on M languages for N target architectures. How many compilers will you
need to write with and without the help of Intermediate Representation?

O M,N
O MN, M+N
O M+N, MN
O MN, NM
O M, NM

O M,N+M

Quiz

Loop unrolling will ____ loop overhead and ____ program code size

() increase, increase
(O increase, reduce
(O reduce, increase

(O reduce, reduce

Check:

Example: loop unrolling

1. Find iteration variable by

examining assignment, _

and update.
for statement 2 found i
/N 3. check that - doesn’t change i.
assignment comparison update statement
update 4. check that _ goes around an

_ even number of times.

Perform optimization
for (i = 0; ENSNEOD; EVSVENFND) {
x =x+ 1; copy - and put an update before
} it

Quiz

Name a few Intermediate Representations you have seen in real life

Review

position = initial + rate * 60;

IR programs
Input - Lexical Syntactic Intermediate IR Analysis/ loop!
program Analysis Analyzer code gen Optimization P!
optimized IR
token stream SyntaX tree Syntax tree program
AST _
= target code
<id, 1> ¥
' S T
<id, 2> * ~_
_ / int_to_float
<id, 3> target code
loop!
gen
60

3-address code program

$r0 = int to float(60);
grl = %r0 * id3;
¢rl + id2;

machine
Sr2; code

o® oo
P R
o, N
|_l

Il
Il

Intermediate representations

e Several forms:
* tree - abstract syntax tree
e graphs - control flow graph
* linear program - 3 address code

e Often times the program is represented as a hybrid
e graphs where nodes are a linear program
* linear program where expressions are ASTs

* Progression:
* start close to a parse tree
* move closer to an ISA

Our first IR: abstract syntax tree

* One step away from parse trees

* Great representation for expressions

* Natural representation to apply type checking

What is an AST?

Parse trees are defined entirely by the
grammar

* Tokens

* Production rules

Parse trees are often not explicitly
constructed. We use them to visualize the

parsing computation

input: 1+5%6

expr
expr <PLUS,"+"> term
term term <TIMES, “*”> factor
factor <NUM, “6">
factor ‘
<NUM, ((5”>

<NUM’ (lll’>

input: 1+5%6
What is an AST?

What are some differences?

///////////////\\\\\\\\\\\\ iy
- /I"”\
/\ T o =
5 6 /N
term term <TIMES, “*”> factor
factor <NUM, “6">
AST factor ‘
<NUM, 115”>

<NUM’ (ll”>

Parse Tree

input: 1+5%6
What is an AST?

What are some differences?

///////////////\\\\\\\\\\\\ iy
- /I"”\
| /\ T <PLUS’ - =
5 6 /N
term term <TIMES, “*”> factor
factor <NUM, “6">

A ST factor ‘

<NUM, 115”>

<NUM, uln>
 decoupled from the grammar

* |eaves are data, not lexemes
* nodes are operators, not non-terminals Parse Tree

Creating an AST from predictive grammar

5 -4 -3
Expr = NUM Expr?2
Expr2 ::= MINUS NUM Expr?2
| un EXpr
5 Expr2

we can inject code at any point during the parse.

Keep in mind that because we wrote our own parser, / ‘\
- 4

Expr2

P

B 3 Expr2

Creating an AST from predictive grammar

Expr
Expr2

::= NUM Expr?2
::= MINUS NUM Expr2

AST<5>

5 -4 -3
Expr
5 Expr2

— I

|

4 Expr2
/ ,\
- 3

Expr2

Get number node
after we see a
number

Creating an AST from predictive grammar

Expr
Expr2

::= NUM Expr?2
::= MINUS NUM Expr2

AST<5>

5 -4 -3
Expr
5 Expr2

— I

|

4 Expr2
/ ,\
- 3

Expr2

Pass the node
down

Creating an AST from predictive grammar

Expr
Expr2

::= NUM Expr?2
::= MINUS NUM Expr2

AST<5>

5 -4 -3
Expr
///\\\\\\\\\\\\\ AST<5>
5 Expr2
Pass the node N 4
down Expr2
/ ,\
B 3 Expr2

Creating an AST from predictive grammar

Expr

Expr2 ::

“n

NUM Expr2
MINUS NUM Expr2

AST<->

T T

AST<5>

AST<4>

5 -4 -3

Expr

5///\\\\\\\\\\\\\ AST<5>

Expr2
, - 4 Expr2
In Expr2, after 4 is

parsed, create a /
- 3

number node and
a minus node

Expr2

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr?2
AST<->

T T

AST<5> AST<4>

5 -4 -3
Expr
5 Expr2

//////////l\\\\\\\\ AST<->
pass the new node - EXpr2

down ////’\\\\\
- 3

Expr2

Creating an AST from predictive grammar

5 -4 -3

Expr = NUM Expr?2
Expr2 ::= MINUS NUM Expr?2

| un EXpr

5 Expr2
/ ‘\ AST<_>
AST<-> - 4 Expr2
AST<-> AST<3>
/\ In Expr2, after 3 is
parsed, create a
AST<5> AST<4>

number node and
a minus node

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr?2
| "
AST<->
AST<-> AST<3>
AST<5> AST<4>

5 -4 -3
Expr
T
5 Expr2
- 4 Expr2
///// F\\\\\\~ AST<->
B 3 Expr2

pass down the new
node

Creating an AST from predictive grammar

5 -4 - 3

Expr = NUM Expr?2
Expr2 ::= MINUS NUM Expr2 AST<->

| un EXpr

5 Expr2
AST<-> - 4 Expr2
AST<-> AST<3>

/\ return the node
AST<5> AST<4> when there is

nothing left to
parse

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2 def parse_expr(self):
| un #lexemes second field is the value

value = self.next_word.value
node = ASTNumNode(value)
self.eat(Token.NUM)

return self.parse_expr2(node)

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2 def parse_expr(self):
| un #lexemes second field is the value

value = self.next_word.value
node = ASTNumNode(value)
self.eat(Token.NUM)

return self.parse_expr2(node)

def parse_expr2(self, 1lhs_node):
... for applying the first production rule
self.eat(Token.MINUS)
value = self.next_word.value
rhs node = ASTNumNode (value)
self.eat(Token.NUM)
node = ASTMinusNode(1lhs_node, rhs_node)
return self.parse_expr2(node)

Creating an AST from predictive grammar

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr2 def parse_expr(self):
| un #lexemes second field is the value

value = self.next_word.value
node = ASTNumNode(value)
self.eat(Token.NUM)

return self.parse_expr2(node)

def parse_expr2(self, lhs_node):

... for applying the second production rule
return lhs_node

Creating an AST from predictive grammar

Expr ::= Term Expr2
Expr2 ::= MINUS Term Expr2 def parse_expr(self):
| o #lexemes second field is the value

value = self.next_word.value
In a more realistic grammar, you might node = ASTNumNode (value)
have more layers: e.g. a Term self.eat(Token.NUM)

return self.parse_expr2(node)
how to adapt?

def parse_expr2(self, 1lhs_node):
... for applying the first production rule
self.eat(Token.MINUS)
value = self.next_word.value
rhs node = ASTNumNode (value)
self.eat(Token.NUM)
node = ASTMinusNode(1lhs_node, rhs_node)
return self.parse_expr2(node)

Creating an AST from predictive grammar

Expr ::= Term Expr2
Expr2 ::= MINUS Term Expr2 def parse_expr(self):
| = self.parse_term()

return self.parse_expr2(node)
In a more realistic grammar, you might
have more layers: e.g. a Term

how to adapt?

def parse_expr2(self, lhs_node):

... for applying the first production rule The parse_term

self.eat(Token.MINUS) will figure out how

rhs_node = self.parse_term() to get you an AST node
= ASTMinusNode(lhs_node, rhs_node) for that term.

return self.parse_expr2(node)

Example

* Python AST

import ast

print(ast.dump(ast.parse('5-4-2")))

Example

* Python AST

import ast

print(ast.dump(ast.parse('5-4-2")))

Expr(value=BinOp(left=BinOp(left=Num(n=5), op=Sub(), right=Num(n=4)), op=Sub(), right=Num(n=2)))

Evaluate an AST by doing a post order traversal

Expr
Expr2

NUM Expr2
MINUS NUM Expr2

AST<-> AST

T

AST<-> AST<3>

T T

AST<5> AST<4>

5 -4 -3
Expr
/// \\\\\\\\\\\\\\ parse tree
5 Expr2
- 4 Expr2
////
B 3 Expr2

Parse trees cannot always be evaluated
in post-order. An AST should always be

Evaluate an AST by doing a post order traversal

Expr ::= NUM Expr2
Expr2 ::= MINUS NUM Expr?2

What if you cannot evaluate it?
What else might you do?

X - Yy - 2
AST<->

T

AST<-> AST<z>

T T

AST<x> AST<y>

Evaluate an AST by doing a post order traversal

Expr NUM Expr2
Expr2 ::= MINUS NUM Expr?2

| un

What if you cannot evaluate it?
What else might you do?

int x;
AST<-> int y;
float z;
float w;
AST<-> AST<z> w=x-Y -2

T T

AST<x> AST<y> How does this change things?

Evaluate an AST by doing a post order traversal

Expr NUM Expr2
Expr2 ::= MINUS NUM Expr?2

| un

needs to be an x86
subss instruction

needs to be an x86 AST<->

sub instruction /\

AST<-> AST<z>

T T

AST<x> AST<y>

Is this all?

What if you cannot evaluate it?
What else might you do?

int x;

int y;

float z;
float w;
W=X-Y - Z

How does this change things?

Evaluate an AST by doing a post order traversal

int x;
EXpr = NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| o float w;
W=X-Y - 2

needs to be an x86

subss instruction Lets do some experiments.

needs to be an x86 AST<->

What should 5 - 5.0 be?
sub instruction /\

AST<-> AST<z>

T T

AST<x> AST<y>

Is this all?

Evaluate an AST by doing a post order traversal

int x;

EXpr = NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| un float Wy

W=X-Y - 2

needs to be an x86

subss instruction Lets do some experiments.

needs to be an x86 AST<->

What should 5 - 5.0 be?
sub instruction /\
but

AST<-> AST<z>

/////////\\\\\\\\ subss rl r2

AST<x> AST<y> . :
interprets both registers

fl
Is this all? as tloats

Evaluate an AST by doing a post order traversal

int x;
EXpr ::= NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| o float w;
W=X-Y - 2

needs to be an x86
subss instruction

needs to be an x86 AST<->

But the binary of 5 is 0b101
sub instruction /\ the float value of 0b101 is 7.00649232162e-45

AST<-> AST<z>

T T

AST<x> AST<y>

We cannot just subtract them!

Is this all?

Evaluate an AST by doing a post order traversal

int x;
EXpr = NUM Expr2 int y;
Expr2 ::= MINUS NUM Expr?2 float z;
| o float w;
W=X-Y - 2

needs to be an x86
subss instruction

needs to be an x86 AST<->

sub instruction /\

AST<int_to_float> AST<z>

/

AST<->

/\ We need to make sure our operands are in the right format!

AST<x> AST<y>

Type systems

* Given a language a type system defines:
* The primitive (base) types in the language
* How the types can be converted to other types
e implicitly or explicitly
* How the user can define new types

Type checking

* Check a program to ensure that it adheres to the type system

Especially interesting for compilers as a program given in the type system for the input
language must be translated to a type system for lower-level program

Type systems

e Different types of Type Systems for languages:
* statically typed: types can be determined at compile time
* dynamically typed: types are determined at runtime
* untyped: the language has no types

 What are examples of each?
* What are pros and cons of each?

Type systems

* Different types of Type Systems for languages:

* statically typed: types can be determined at compile time
* dynamically typed: types are determined at runtime
* untyped: the language has no types

 What are examples of each?
* What are pros and cons of each?

* |n this class, we will be:
* Compiling a statically typed language (similar to C)
* into an untyped language (similar to an ISA)
 using a dynamically typed language (python)

Type systems

Considerations:

e common base types in a language:
* ints
e chars
* strings

floats

* bool

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:
e common base types in a language:

* ints . :
. chars size of ints? .
. How does Cdo it?
* strings How does Python do it?
* floats Pros and cons?
* bool

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

e common base types in a language:
* ints
* chars
* strings

floats

* bool

Are strings a base type? In C? In Python?

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

e common base types in a language:
* ints
e chars
* strings

floats
e bool How are bools handled? in C? in Python

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

e common base types in a language:
* ints
* chars
* strings

floats

* bool

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

Type systems

Considerations:

e common base types in a language:
* ints
* chars
* strings

floats

* bool

* How to combine types in expressions:
 int and float?
* int and char?
* int and bool?

What do each of these do if they are +’ed together?

Type checking on an AST

int x;
int y;
float z;
float w;

W=ZX-Y - 2 each node additionally gets a type

AST<->

T

AST<-> AST<z>

T T

AST<x> AST<y>

Type checking on an AST

int x;
int y;
float z;
float w; "
W=ZX-Y - 2 each node additionally gets a type
we can get this from the symbol table for the leaves
AST<->
AST<-> AST<z, float>

T

AST<x, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

AST<->

T

AST<-,?> AST<z, float>

T T

AST<X, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

combination rules for subtraction:

/////////////»\\\\\\\ int int int

int float float

AST<-,?> AST<z, float>
/////////\\\\\\\\ float int float
float float float

AST<X, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

/////////////»\\\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<X, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

AST<:, 2> first | second | result ___

//////////////\\\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<X, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

///////////////«\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<X, int> AST<y, int>

Type checking on an AST

int x;

int y; How do we get the type for this one?
float z;

float w;

W=X-Y - 2

inference rules for subtraction:

///////////////«\\\\\ int int int

. int float float
AST<-,int> AST<z, float>
float int float
/////////\\\\\\\\ float float float

AST<X, int> AST<y, int>

what else?

Type checking on an AST

int x;

int y;

float z;

float w;

W=X-Y - 2

AST<-,float>
AST<int_to_roT\
AST<-,int>
AST<x, int> AST<y, int>

How do we get the type for this one?

AST<z, float>

inference rules for subtraction:

int int int

int float float
float int float
float float float

what else? need to convert the int to a float

class ASTNode():
def __init_ (self):

pass

class ASTLeafNode(ASTNode):
def __init_ (self, value):
selLf.value = value

class ASTNumNode (ASTLeafNode):
def __init_ (self, value):
super().__init__ (value)

class ASTIDNode(ASTLeafNode):
def __init_ (self, value):
super().__init__ (value)

class ASTBinOpNode (ASTNode):
def __init__ (self, 1_child,
self.l _child = 1 _child
selLf.r_child r child

r_child):

class ASTPlusNode(ASTBinOpNode):
def _init_ (self, 1 _child, r_child):
super().__init__ (1_child, r_child)

class ASTMultNode(ASTBinOpNode):
def _init_ (self, 1_child, r_child):
super().__init__ (1_child, r_child)

Enum for types

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Our base AST Node needs a type

class ASTNode():
def __init_ (self):
self.node_type = None
pass

def set_type(self, t):
self.node_type =t

def get_type(self):
return self.node_type

Now we need to set the types for the leaf nodes

Enum for types

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Our base AST Node needs a type

Now we need to set the types for the leaf nodes

class ASTNode():
def __init_ (self):
self.node_type = None
pass

def set_type(self, t):
self.node_type =t

def get_type(self):
return self.node_type

class ASTNumNode (ASTLeafNode) :
def __init_ (self, value):
super().__init__ (value)
if is_int(value):
self.set_type(Types.INT)
else:
self.set_type(Types.FLOAT)

Enum for types

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Our base AST Node needs a type

Now we need to set the types for the leaf nodes

class ASTNode():
def __init_ (self):
self.node_type = None
pass

def set_type(self, t):
self.node_type =t

def get_type(self):
return self.node_type

class ASTNumNode (ASTLeafNode) :
def __init_ (self, value):
super().__init__ (value)
if is_int(value):
self.set_type(Types.INT)
else:
self.set_type(Types.FLOAT)

class ASTIDNode(ASTLeafNode):

def __init__ (self, value, value_type):
super().__init__ (value)

self.set_type(value_type)

Where can we get the value type for an ID?

Sym bOl Ta b ‘ e Say we are matched the statement:

int x;

e SymbolTable ST;

(TYPE, ‘int’) (ID, *x)
declare_statement ::= TYPE ID SEMI

{

in previous lectures we didn’t
eat (TYPE) record any information in the symbol

1d name = self.to match.value table
eat (ID)

ST.insert(1d name, None)

eat (SEMI)

Symbol Table

Say we are matched the statement:

int x;
e SymbolTable ST;
(TYPE, ‘int’) (ID, ’x’)
declare_statement ::= TYPE ID SEMI
{ o -
_ in previous lectures we didn’t
Value_type = self. to_match -value record any information in the symbol
eat (TYPE) table
1d name = self.to match.value
eat (ID) record the type in the symbol table
ST.insert(1id name, value type)
eat (SEMI)

Enum for types

from enum import Enum

class Types(Enum):
INT = 1
FLOAT = 2

Our base AST Node needs a type

Now we need to set the types for the leaf nodes

class ASTNode():
def __init_ (self):
self.node_type = None
pass

def set_type(self, t):
self.node_type =t

def get_type(self):
return self.node_type

class ASTNumNode (ASTLeafNode) :
def __init_ (self, value):
super().__init__ (value)
if is_int(value):
self.set_type(Types.INT)
else:
self.set_type(Types.FLOAT)

class ASTIDNode(ASTLeafNode):

def __init__ (self, value, value_type):
super().__init__ (value)

self.set_type(value_type)

Where can we get the value type for an ID?

But that doesn’t get us here yet...

add the type at parse time

Unit ::= ID
| NUM

def parse_unit(self, lhs_node):

... for applying the first production rule (ID)
value = self.next_word.value
... Check that value is in the symbol table

node = ASTIDNode(value, ST[valuel)
return node

Type inference

* We now have the types for the leaf nodes

int x;
int y;
float w;
w=x+y + 5.5
AST<+,?>
AST<+,?7> AST<5.5, float>

T

AST<x, int> AST<y, int>

Type inference

* We now have the types for the leaf nodes

Next steps:

we do a post order traversal

AST<4 2> on the AST and do a type inference

O

AST<+,?7> AST<5.5, float>

T

AST<x, int> AST<y, int>

Type inference

def type_inference(n): Given a node n: find its type and the types of any of its children

Type inference

type_inference(n):

case split on n:

if n is a leaf node:
return n.get type()

Given a node n: find its type and the types of any of its children

base case

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get type()

if n is a plus node:

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

inference rules for plus

if n is a leaf node:

return n.get_type() left___right ___Jresult ___

_ lookup the rule for plus int int
if n is a plus node:
return lookup type from table int float
float 1int

float float

int

float
float
float

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

inference rules for plus

if n is a leaf node:

return n.get_type() left___right ___Jresult ___

_ _ lookup the rule for plus int int
1f n 1s a plus node:
return lookup type from table int float
float 1int

float float

but we’re missing a few things

int

float
float
float

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

inference rules for plus

if n is a leaf node:

we need to make sure the
return n.get_type() children have types! left |right |resut |

if n is a plus node: int int
do type inference on children int float
return lookup type from table float |lint

float float

int

float
float
float

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

inference rules for plus

if n is a leaf node:

return n.get type() we should record our type mﬁ

if n is a plus node: int int
do type inference on children int float
t = lookup type from table leme | S

set n type to t

return t float float

int

float
float
float

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

if n is a leaf node:
return n.get type()

if n is a plus node:
do type inference on children
t = lookup type from table
set n type to t
return t

is this just for plus?

int
int
float
float

int
float
int

float

int

float
float
float

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children
case split on n: most language promote
is this just for plus? types, e.g. ints to float for
if n is a leaf node: expression operators

return n.get type()

if n is a plus node: left __right ____result

do type inference on children int int
t = lookup type from table

set n type to t _
return t float 1int

float float

int float

int

float
float
float

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children
case split on n: most language promote
is this just for plus? types, e.g. ints to float for
if n is a leaf node: expression operators

return n.get type()

if n is a bin op node: left __right ____result

do type inference on children int int
t = lookup type from table

set n type to t _
return t float 1int

float float

int float

int

float
float
float

Type inference

type_inference(n):

case split on n:

if n is a leaf node:
return n.get type()

if n is a bin op node:
do type inference on children
t = lookup type from table
set n type to t
return t

What about for assignments?

int x;
cout << (x = 5.5) << endl;

What does this return?

int int int
int float float
float int float

float float float

Type inference

type_inference(n):

case split on n:

if n is a leaf node:
return n.get type()

if n is a bin op node:
do type inference on children
t = lookup type from table
set n type to t
return t

What about for assignments?

int x;
cout << (x = 5.5) << endl;

What does this return?

int int int
int float int
float int float
float float float

whatever the left is

Type inference

type_inference(n):

case split on n:

if n is a leaf node:
return n.get type()

if n is an assignment:

if n is a bin op node:

What about for assignments?

int x;
cout << (x = 5.5) << endl;

What does this return?

int int int
int float int
float int float
float float float

whatever the left is

Type checking

* Checking for errors

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

inference rules for plus
if n is a leaf node:

return n.get type() we should record our type mﬁ

if n is a plus node: int int int
do type inference on children int float float
t = lookup type from table float |lint = ot
if t is None:
float float float

throw type exception
set n type to t
return t

Type inference

type_inference(n): Given a node n: find its type and the types of any of its children

case split on n:

inference rules for plus
if n is a leaf node:

return n.get_type() TR e P

int int int
if n is a plus node: =i = *
do type inference on children int float float
t = lookup type from table float e float
if t is None:
throw type exception . loss float
set n type to t string int None

return t
like in Python

See everyone on Friday!

* We will discuss implementing type inference on Monday

